Preview

Tuberculosis and socially significant diseases

Advanced search

Adaptation to multistress in vitro of Mycobacterium tuberculosis strains of East-Asian and Euro-American lineages, differing in drug resistance

https://doi.org/10.54921/2413-0346-2024-12-1-9-18

Abstract

In order to study the in vitro adaptation of M.tuberculosis strains of various phylogenetic lineages and drug resistance under multistress conditions created by a lack of nutrients, reactive forms of nitrogen and oxygen, 17 strains of M.tuberculosis were studied (10 strains of the East Asian lineage of the Beijing sublineage and 7 strains Euro-American lineage). We studied the culture yield, the state of M.tuberculosis cells in culture and the secretome when cultivating strains under conditions of multistress, nitrosative stress and in optimal conditions. It has been established that M. tuberculosis strains of frequently SITs with a sensitive genotype or with widespread mutations, in contrast to strains with rare mutations and with an expanded spectrum of phenotypic drug resistance, adapt well to stress conditions in vitro. M.tuberculosis strains of the Beijing sublineage adapt to stress at an earlier time than M.tuberculosis of the Euro-American lineage; this was especially evident in the multistress model.

About the Authors

S. N. Andreevskaya
Federal State Budgetary Scientific Institution «Central Scientific Research Institute of Tuberculosis»
Russian Federation

Moscow



T. G. Smirnova
Federal State Budgetary Scientific Institution «Central Scientific Research Institute of Tuberculosis»
Russian Federation

Moscow



E. E. Larionova
Federal State Budgetary Scientific Institution «Central Scientific Research Institute of Tuberculosis»
Russian Federation

Moscow



L. N. Chernousova
Federal State Budgetary Scientific Institution «Central Scientific Research Institute of Tuberculosis»
Russian Federation

Moscow



A. E. Ergeshov
Federal State Budgetary Scientific Institution «Central Scientific Research Institute of Tuberculosis»; Federal State Budgetary Educational Institution of Higher Education «Russian University of Medicine» of the Ministry of Health of Russia
Russian Federation

Moscow



References

1. Андреевская С.Н., Черноусова Л.Н., Смирнова Т.Г., Ларионова Е.Е., Кузьмин А.В. Трансмиссия штаммов микобактерий туберкулеза, обусловленная миграционными процессами в Российской Федерации (на примере миграции населения из кавказского региона в Москву и Московскую область) // Пробл. туберкулеза и болезней легких. – 2006. – № 1. – С. 29-35.

2. Сурикова О.В., Войтих Д.В., Курунов Ю.Н. Опыт использования VNTR-типирования: Mycobacterium tuberculosis для решения клинических задач: контроля за качеством лечения и работой лабораторной службы // Молекул. генетика, микробиология и вирусология. – 2005. – № 2. – С. 21-24.

3. Черноусова Л.Н., Голышевская В.И., Ерохин В.В., Кузнецов С.И., Захарова С.М., Мелентьев А.С., Федорин И.М., Николаевский В.В., Радди М., Балабанова Я.М., Дробневский Ф. Преобладание штаммов Mycobacterium tuberculosis семейства Beijing и факторы риска их трансмиссии в Самарской области // Пробл. туберкулеза и болезней легких. – 2006. – № 2. – С. 31-37.

4. Bifani P.J., Mathema B., Kurepina N.E., Kreiswirth B.N. Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains // Trends Microbiol. – 2002. – Vol. 10, № 1. – P. 45-52. DOI: 10.1016/s0966-842x(01)02277-6.

5. Brugmann W.B., Firmani M.A. Low concentrations of nitric oxide exert a hormetic effect on Mycobacterium tuberculosis in vitro // J. Clin. Microbiol. – 2005. – Vol. 43, № 9. - P. 4844-4846. DOI: 10.1128/JCM.43.9.4844-4846.2005.

6. Chan J., Xing Y., Magliozzo R.S., Bloom B.R. Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages // J. Exp. Med. – 1992. – Vol. 175, № 4. – P. 1111-1122. DOI: 10.1084/jem.175.4.1111.

7. Dye C., Williams B.G., Espinal M.A., Raviglione M.C. Erasing the world‘s slow stain: strategies to beat multidrug-resistant tuberculosis // Science. – 2002. – Vol. 295, № 5562. – P. 2042-2046. DOI: 10.1126/science.1063814.

8. Ehrt S., Schnappinger D. Mycobacterial survival strategies in the phagosome: defence against host stresses // Cell Microbiol. – 2009. – Vol. 11, № 8. – P. 1170-1178. DOI: 10.1111/j.1462-5822.2009.01335.x.

9. Ejo M., Torrea G., Uwizeye C., Kassa M., Girma Y., Bekele T., Ademe Y., Diro E., Gehre F., Rigouts L., de Jong B.C. Genetic diversity of the Mycobacterium tuberculosis complex strains from newly diagnosed tuberculosis patients in Northwest Ethiopia reveals a predominance of East-African-Indian and Euro-American lineages // Int. J. Infect. Dis. – 2021. – Vol. 103. – P. 72-80. DOI: 10.1016/j.ijid.2020.11.129.

10. Firmani M.A., Riley L.W. Reactive nitrogen intermediates have a bacteriostatic effect on Mycobacterium tuberculosis in vitro // J. Clin. Microbiol. – 2002. – Vol. 40, № 9. – P. 3162-3166. DOI: 10.1128/JCM.40.9.3162-3166.2002.

11. Gagneux S., Long C.D., Small P.M., Van T., Schoolnik G.K., Bohannan B.J. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis // Science. - 2006. – Vol. 312, № 5782. – P. 1944-1946. DOI: 10.1126/science.1124410.

12. Haile B., Tafess K., Zewude A., Yenew B., Siu G., Ameni G. Spoligotyping and drug sensitivity of Mycobacterium tuberculosis isolated from pulmonary tuberculosis patients in the Arsi Zone of southeastern Ethiopia // New Microbes New Infect. – 2019. – Vol. 33. – P. 100620. DOI: 10.1016/j.nmni.2019.100620.

13. Idh J., Mekonnen M., Abate E., Wedajo W., Werngren J., Ängeby K., Lerm M., Elias D., Sundqvist T., Aseffa A., Stendahl O., Schön T. Resistance to first-line anti-TB drugs is associated with reduced nitric oxide susceptibility in Mycobacterium tuberculosis // PLoS One. – 2012. – Vol. 7, № 6. - e39891. DOI: 10.1371/journal.pone.0039891

14. Kulaga S., Behr M., Musana K., Brinkman J., Menzies D., Brassard P., Kunimoto D., Tannenbaum T.N., Thibert L., Joseph L., Boivin J.F., Schwartzman K. Molecular epidemiology of tuberculosis in Montreal // CMAJ. – 2002. - Vol. 167, № 4. - P. 353-354.

15. Langlois-Klassen D., Senthilselvan A., Chui L., Kunimoto D., Saunders L.D., Menzies D., Long R. Transmission of Mycobacterium tuberculosis Beijing Strains, Alberta, Canada, 1991-2007 // Emerg. Infect. Dis. – 2013. – Vol. 19, № 5. – P. 701-711. DOI: 10.3201/eid1905.121578.

16. Mariam D.H., Mengistu Y., Hoffner S.E., Andersson D.I. Effect of rpoB mutations conferring rifampin resistance on fitness of Mycobacterium tuberculosis // Antimicrob. Agents Chemother. – 2004. – Vol. 48, № 4. – P. 1289-1294. DOI: 10.1128/AAC.48.4.1289-1294.2004.

17. Mokrousov I. Emerging resistant clone of Mycobacterium tuberculosis in west Asia // Lancet Infect. Dis. – 2016. – Vol. 16, № 12. – P. 1326-1327. DOI: 10.1016/S1473-3099(16)30460-1.

18. Mokrousov I. Insights into the origin, emergence, and current spread of a successful Russian clone of Mycobacterium tuberculosis // Clin. Microbiol. Rev. – 2013. – Vol. 26, № 2. – P. 342-360. DOI: 10.1128/CMR.00087-12.

19. Mokrousov I. Mycobacterium tuberculosis phylogeography in the context of human migration and pathogen‘s pathobiology: Insights from Beijing and Ural families // Tuberculosis (Edinb). – 2015. – Vol. 95, Suppl 1. – P. 167-176. DOI: 10.1016/j.tube.2015.02.031.

20. Pasechnik O., Vyazovaya A., Vitriv S., Tatarintseva M., Blokh A., Stasenko V., Mokrousov I. Major genotype families and epidemic clones of Mycobacterium tuberculosis in Omsk region, Western Siberia, Russia, marked by a high burden of tuberculosis-HIV coinfection // Tuberculosis (Edinb). – 2018. – Vol. 108. – P. 163-168. DOI: 10.1016/j.tube.2017.12.003.

21. Peddireddy V., Doddam S.N., Ahmed N. Mycobacterial dormancy systems and host responses in tuberculosis // Front. Immunol. – 2017. – Vol. 8. – P. 84. DOI: 10.3389/fimmu.2017.00084.

22. Rhoades E.R., Orme I.M. Susceptibility of a panel of virulent strains of Mycobacterium tuberculosis to reactive nitrogen intermediates // Infect Immun. – 1997. – Vol. 65, № 4. – P. 1189-1195. DOI: 10.1128/iai.65.4.1189-1195.1997.

23. Roycroft E., O‘Toole R.F., Fitzgibbon M.M., Montgomery L., O‘Meara M., Downes P., Jackson S., O‘Donnell J., Laurenson I.F., McLaughlin A.M., Keane J., Rogers T.R. Molecular epidemiology of multi- and extensively-drug-resistant Mycobacterium tuberculosis in Ireland, 2001-2014 // J. Infect. – 2018. – Vol. 76, № 1. – P. 55-67. DOI: 10.1016/j.jinf.2017.10.002.

24. Rufai S.B., Sankar M.M., Singh J., Singh S. Predominance of Beijing lineage among pre-extensively drug-resistant and extensively drug-resistant strains of Mycobacterium tuberculosis: A tertiary care center experience // Int. J. Mycobacteriol. – 2016. – Vol. 5, Suppl. 1. – P. 197-198. DOI: 10.1016/j.ijmyco.2016.07.005.

25. Serafini A., Tan L., Horswell S., Howell S., Greenwood D.J., Hunt D.M., Phan M.D., Schembri M., Monteleone M., Montague C.R., Britton W., Garza-Garcia A., Snijders A.P., Vander Ven B., Gutierrez M.G., West N.P., de Carvalho L.P.S. Mycobacterium tuberculosis requires glyoxylate shunt and reverse methylcitrate cycle for lactate and pyruvate metabolism // Mol. Microbiol. – 2019. – Vol. 112, № 4. – P. 1284-1307. DOI: 10.1111/mmi.14362.

26. Vilchèze C., Kremer L. Acid-fast positive and acid-fast negative Mycobacterium tuberculosis: the Koch paradox // Microbiol. Spectr. – 2017. – Vol. 5, № 2.

27. Wirth T., Hildebrand F., Allix-Béguec C., Wölbeling F., Kubica T., Kremer K., van Soolingen D., Rüsch-Gerdes S., Locht C., Brisse S., Meyer A., Supply P., Niemann S. Origin, spread and demography of the Mycobacterium tuberculosis complex // PLoS Pathog. – 2008. – Vol. 4, № 9. - e1000160.

28. Yang C.S., Yuk J.M., Jo E.K. The role of nitric oxide in mycobacterial infections // Immune Netw. – 2009. – Vol. 9, № 2. – P. 46-52.

29. Zaczek A., Brzostek A., Augustynowicz-Kopec E., Zwolska Z., Dziadek J. Genetic evaluation of relationship between mutations in rpoB and resistance of Mycobacterium tuberculosis to rifampin // BMC Microbiol. – 2009. – Vol. 9. – P. 10.


Review

For citations:


Andreevskaya S.N., Smirnova T.G., Larionova E.E., Chernousova L.N., Ergeshov A.E. Adaptation to multistress in vitro of Mycobacterium tuberculosis strains of East-Asian and Euro-American lineages, differing in drug resistance. Tuberculosis and socially significant diseases. 2024;12(1):9-18. (In Russ.) https://doi.org/10.54921/2413-0346-2024-12-1-9-18

Views: 122


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-0346 (Print)
ISSN 2413-0354 (Online)