MODERN MOLECULAR-GENETIC METHODS FOR TUBERCULOSIS DIAGNOSTIC BY SURGERY SAMPLES
Abstract
Lack of the data on M. tuberculosis (MBT) drug susceptibility delays prescription of the adequate chemotherapy, among others – in postoperative course. The complex of surgical samples testing based on molecular-genetic and microbiological methods provide more comprehensive information о свойствах возбудителя. The rate of MBT DNA detection in surgical samples from 123 pulmonary tuberculosis patients 8.5 times exceed the positive culture rate. Retrospective comparison of MBT and drug resistance detection in respiratory samples in preoperative period demonstrate, that by molecular-genetic tests in surgical samples the tuberculosis etiology was primary confirmed in 42.3% patients, among them in 92.3% the drug resistance profile was defined by «TB-TEST». In addition, due to the complicated MBT cultivating from surgical samples, moleculargenetic methods, applicable to that kind of material, can be used in epidemiological studies.
About the Authors
A. I. IsakovaRussian Federation
E. Yu. Nosova
Russian Federation
Yu. Yu. Garmash
Russian Federation
K. A. Bogdanov
Russian Federation
V. N. Trusov
Russian Federation
S. G. Safonova
Russian Federation
References
1. Белоусова К.В. Характеристика клинически значимых биологических свойств возбудителя туберкулеза, выделенного из резецированных участков легких больных туберкулезом: автореф. дис. … канд. биолог. наук. – Екатеринбург, 2013. – 25 с.
2. Елькин А.В. Отдаленные результаты хирургического лечения туберкулеза легких в зависимости от массивности бактериовыделения и лекарственной устойчивости возбудителя // Проблемы туберкулеза и болезней легких. – 2003. – № 5. – С. 28-31.
3. Концепции химиотерапии и этиологической (микробиологической и молекулярно-биологической) диагностики туберкулеза в Российской Федерации на современном этапе. – Москва. – 2011.
4. Некрасов Е.В., Янова Г.В. Результаты хирургического лечения больных туберкулезом легких, выделяющих множественно лекарственно-устойчивые микобактерии туберкулеза // Клиническая медицина. – 2011. – Т. 78. – № 2. – С. 75-78.
5. Противотуберкулезная работа в городе Москве. Аналитический обзор статистических показателей по туберкулезу 2015 г. / Под ред. Е.М. Богородской, В.И. Литвинова, Е.М. Белиловского. – М.: МНПЦБТ, 2016. – 244 с.
6. Скворцов Т.А., Ажикина Т.Л. Адаптивные изменения экспрессии генов Mycobacterium tuberculosis в ходе инфекционного процесса // Биоорганическая химия. – 2012. – Т. 38. – № 4. – С. 391-405.
7. Andersson D.I., Levin B.R. The biological cost of antibiotic resistance // Curr. Opin. Microbiol. – 1999. – Vol. 2. – N. 5. – P. 489–493.
8. Gargneux S. Fitness cost of drug resistance in Mycobacterium tuberculosis // Clin. Microbiol. Infect. – 2009. – Vol. 15. – Suppl. 1. – P. 66-68.
9. Gargneux S., Long C.D., Small P.M. et al. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis // Science. – 2006. – Vol. 312. – N. 5782. – P. 1944-1946.
10. von Groll A., Martin A., Stehr M. et al. Fitness of Mycobacterium tuberculosis strains of the W-Beijing and non-W-Beijing genotype // PlosOne. – 2010. – Vol. 5. – N. 4. – e10191.
11. Hillemann D., Richter E., Rüsch-Gerdes S. Use of the BACTEC Mycobacteria Growth Indicator Tube 960 automated system for recovery of Mycobacteria from 9558 extrapulmonary specimens, including urine samples. // J. Clin. Microbiol. – 2006. – Vol. 44. – N. 11. – P. 4014–4017.
12. Kambli P., Ajbani K., Sadani M. et al. Defining multidrug-resistant tuberculosis: correlating GenoType MTBDRplus assay results with minimum inhibitory concentrations // Diagn. Microbiol. Infect. Dis. – 2015. – Vol. 82. – N. 1. – P. 49-53.
13. Kent P.T., Kubica G.P. Public health mycobacteriology: a guide for the level III laboratory. – Atlanta, Ga, USA: US Dept. of Health and Human Services, Public Health Service, Centers for Disease Control, 1985.
14. Mariam D.H., Mengistu Y., Hoffner S.E., Andersson D.I. Effect of rpoB mutations conferring rifampin resistance on fitness of Mycobacterium tuberculosis // Antimicrob. Agents Chemother. – 2004. – Vol. 48. – N. 4. – P. 1289-1294.
15. Nosova E., Zimenkov D., Khakhalina A. et al. A comparison of the Sensititre MycoTB Plate, the BACTEC MGIT 960, and a Microarray-Based molecular assay for the detection of drug resistance in clinical Mycobacterium tuberculosis isolates in Moscow, Russia // PLoS One. – 2016. – Vol. 11. – N. 11. – e0167093. https://doi.org/10.1371/journal.pone.0167093.
16. Park H.D., Guinn K.M., Harrell M.I. et al. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis // Mol. Microbiol. – 2003. – Vol. 48. – N. 3. – P. 833-843.
17. Pym A.S., Saint-Joanis B., Cole S.T. Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans // Infect. Immun. – 2002. – Vol. 70. – N. 9. – P. 4955-4960.
18. Rustad T.R., Harrell M.I., Liao R., Sherman D.R. The enduring hypoxic response of Mycobacterium tuberculosis. // PLoS One. – 2008. – Vol. 3. – e1502.
19. Springer B., Lucke K., Calligaris-Maibach R. et al. Quantitative drug susceptibility testing of Mycobacterium tuberculosis by use of MGIT 960 and EpiCenter instrumentation // J. Clin. Microbiol. – 2009. – Vol. 47. – N. 6. – P. 1773-1780.
20. Zimenkov D.V., Kulagina E.V., Antonova O.V. et al. Simultaneous drug resistance detection and genotyping of Mycobacterium tuberculosis using a low-density hydrogel microarray // J. Antimicrob. Chemother. – 2016. – Vol. 71. – N. 6. – P. 1520-1531.
Review
For citations:
Isakova A.I., Nosova E.Yu., Garmash Yu.Yu., Bogdanov K.A., Trusov V.N., Safonova S.G. MODERN MOLECULAR-GENETIC METHODS FOR TUBERCULOSIS DIAGNOSTIC BY SURGERY SAMPLES. Tuberculosis and socially significant diseases. 2018;(1):12-19. (In Russ.)