Preview

Tuberculosis and socially significant diseases

Advanced search

Study of drug susceptibility of Mycobacterium tuberculosis to delamanid using BACTECTM MGITTM 960 automated system

https://doi.org/10.54921/2413-0346-2024-12-4-25-35

Abstract

Aim. To study the susceptibility of clinical strains of M. tuberculosis complex (MTB) to delamanid using the automated Bactec MGIT system.

Material and methods. We studied 79 M. tuberculosis isolates from 78 TB patients treated in 2017-2023. 39 MTB strains were susceptibile and 40 had different drug resistance profiles to anti-tubercular drugs. Minimum inhibitory concentrations (MIC) of delamanid in Middlebrook 7H9 liquid medium were determined using the Bactec MGIT system, the susceptibility results were assessed using the critical concentration of 0.06 μg/ml recommended by WHO. Whole genome sequencing was used to identify mutations associated with phenotypic resistance to delamanid in MTB strains.

Results. Delamanid demonstrated high activity against drug-naive MTB strains. MIC values ranged from 0.004 to 0.03 μg/ml for 97.4% (76/78) of studied susceptible MTB strains. Two MTB strains isolated from newly diagnosed patients with pulmonary TB had primary resistance to delamanid (2.6%; 2/78), and acquired resistance was detected in one MTB strain (2.6%; 1/39) during delamanid-based therapy for drugresistant TB. Genetic determinants of resistance were detected in three clinical MTB strains (N91T and W88* mutations in the ddn gene and Q299* mutation in the fgd1 gene) with MICs exceeding the critical concentration.

About the Authors

Y. D. Mikhailova
Moscow Research and Clinical Center for Tuberculosis Control of the Moscow City Health Department
Russian Federation

Moscow



M. V. Makarova
Moscow Research and Clinical Center for Tuberculosis Control of the Moscow City Health Department
Russian Federation

Moscow



L. Y. Krylova
Moscow Research and Clinical Center for Tuberculosis Control of the Moscow City Health Department
Russian Federation

Moscow



E. Y. Nosova
Moscow Research and Clinical Center for Tuberculosis Control of the Moscow City Health Department
Russian Federation

Moscow



S. A. Zhirkova
Moscow Research and Clinical Center for Tuberculosis Control of the Moscow City Health Department
Russian Federation

Moscow



A. I. Ushtanit
Center for High-Precision Genomic Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology
Russian Federation

Moscow



D. V. Zimenkov
Center for High-Precision Genomic Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology
Russian Federation

Moscow



References

1. Зимина В.Н., Викторова И.Б. Деламанид – новый противотуберкулезный препарат: применение, ограничения, перспективы // Туберкулез и болезни легких. – 2021. – Т. 99. – № 2. – С. 58-66. http://doi.org/10.21292/2075-1230-2021-99-2-58-66.

2. Можокина Г.Н., Самойлова А.Г., Васильева И.А., Абрамченко А.В. Деламанид: анализ эффективности и безопасности // Туберкулез и болезни легких. – 2023. – Т. 101. – № 6. – С. 102-110. https://doi.org/10.58838/2075-1230-2023-101-6-102-110.

3. Bloemberg G.V., Keller P.M., Stucki D. et al. Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis // N. Engl. J. Med. – 2015. – Vol. 373, № 20. – P. 1986-1988. doi: 10.1056/NEJMc1505196.

4. Deane B.R., Porkess S. Clinical trial transparency update: an assessment of the disclosure of results of company-sponsored trials associated with new medicines approved in Europe in 2014 // Curr. Med. Res. Opin. – 2018. – Vol. 34, № 7. – P. 1239-1243. doi:10.1080/03007995.2017.1415057.

5. EUCAST. Breakpoint tables for interpretation of MICs and zone diameters. Version 14.0, valid from 2024-01-01 // [Электронный ресурс]. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_14.0_Breakpoint_Tables.pdf.

6. Fujiwara M., Kawasaki M., Hariguchi N. et al. Mechanisms of resistance to delamanid, a drug for Mycobacterium tuberculosis // Tuberculosis. – 2018. – Vol. 108. – P. 186-194. doi: 10.1016/j.tube.2017.12.006.

7. He W., Liu C., Liu D. et al. Prevalence of Mycobacterium tuberculosis resistant to bedaquiline and delamanid in China // J. Glob. Antimicrob. Resist. – 2021. – Vol. 26. – P. 241-248. doi: 10.1016/j.jgar.2021.06.007.

8. Kadura S., King N., Nakhoul M. et al. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid // J. Antimicrob. Chemother. – 2020. – Vol. 75, № 8. – P. 2031-2043. doi: 10.1093/jac/dkaa136.

9. Keller P.M., Hömke R., Ritter C. et al. Determination of MIC distribution and epidemiological cutoff values for bedaquiline and delamanid in Mycobacterium tuberculosis using the MGIT 960 system equipped with TB eXiST // Antimicrob. Agents Chemother. – 2015. – Vol. 59, № 7. – Р. 4352-4355. doi: 10.1128/AAC.00614-15.

10. Khoshnood S., Taki E., Sadeghifard N. et al. Mechanism of action, resistance, synergism, and clinical implications of delamanid against multidrug-resistant Mycobacterium tuberculosis // Front Microbiol. – 2021. – Vol. 12. – P. 717045. doi: 10.3389/fmicb.2021.717045.

11. Köser C.U., Maurer F.P., Kranzer K. «Those who cannot remember the past are condemned to repeat it»: Drug-susceptibility testing for bedaquiline and delamanid // Int. J. Infect. Dis. – 2019. – Vol. 80S. – P. S32-S35. doi: 10.1016/j.ijid.2019.02.027.

12. Kumar D., Negi B., Rawat D.S. The anti-tuberculosis agents under development and the challenges ahead // Future Med. Chem. – 2015. – Vol. 7, № 15. – P. 1981-2003. doi: 10.4155/fmc.15.128.

13. Liu Y., Shi J., Li L. et al. Spontaneous mutational patterns and novel mutations for delamanid resistance in Mycobacterium tuberculosis // J. Antimicrob. Agents Chemother. – 2022. – Vol. 66, № 12. – e0053122. doi: 10.1128/aac.00531-22.

14. Manjunatha U., Boshoff H.I., Barry C.E. The mechanism of action of PA-824: Novel insights from transcriptional profiling // Commun. Integr. Biol. – 2009. – Vol. 2, № 3. – P. 215-218. doi: 10.4161/cib.2.3.7926.

15. Matsumoto M., Hashizume H., Tomishige T. et al. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice // PLoS Med. – 2006. – Vol 3, № 11. – e466. doi: 10.1371/journal.pmed.0030466.

16. Mok S., Roycroft E., Flanagan P.R. et al. Investigation of genomic mutations and their association with phenotypic resistance to new and repurposed drugs in Mycobacterium tuberculosis complex clinical isolates // J. Antimicrob. Chemother. – 2023. – Vol. 78, № 11. – P. 2637-2644. doi: 10.1093/jac/dkad252.

17. Nguyen T.V.A., Anthony R.M., Cao T.T.H. et al. Delamanid resistance: update and clinical management // Clin. Infect. Dis. – 2020. – Vol. 71, № 12. – P. 3252-3259. doi:10.1093/cid/ciaa755.

18. Rustomjee R., Zumla A. Delamanid expanded access novel treatment of drug resistant tuberculosis // Infect. Drug Resist. – 2015. – Vol. 8. – P. 359-366. doi: 10.2147/IDR.S62119.

19. Saliu O.Y., Crismale C., Schwander S.K., Wallis R.S. Bactericidal activity of OPC-67683 against drug-tolerant Mycobacterium tuberculosis // J. Antimicrob. Chemother. – 2007. – Vol. 60, № 5. – P. 994-998. doi: 10.1093/jac/dkm291.

20. Sasaki H., Haraguchi Y., Itotani M. et al. Synthesis and antituberculosis activity of a novel series of optically active 6-nitro-2,3-dihydroimidazo [2,1-b]oxazoles // J. Med. Chem. – 2006. –Vol. 49, № 26. – P. 7854-7860. doi: 10.1021/jm060957y.

21. Schena E., Nedialkova L., Borroni E. et al. Delamanid susceptibility testing of Mycobacterium tuberculosis using the resazurin microtitre assay and the BACTEC™ MGIT™ 960 system // J. Antimicrob. Chemother. – 2016. – Vol. 71, № 6. – P. 1532-1539. doi: 10.1093/jac/dkw044.

22. Singh R., Manjunatha U., Boshoff H.I. et al. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release // Science. – 2008. – Vol. 322, № 5906. – P. 1392-1395. doi: 10.1126/science.1164571.

23. Sotgiu G., Pontali E., Centis R. et al. Delamanid (OPC-67683) for treatment of multi-drug-resistant tuberculosis // Expert Rev. Anti. Infect. Ther. – 2015. – Vol. 13, № 3. – P. 305-315. doi: 10.1586/14787210.2015.1011127.

24. Stinson K., Kurepina N., Venter A. et al. MIC of delamanid (OPC-67683) against Mycobacterium tuberculosis clinical isolates and a proposed critical concentration // Antimicrob. Agents Chemother. – 2016. – Vol. 60, № 6. – P. 3316-3322. doi: 10.1128/AAC.03014-15.

25. Stover C.K., Warrener P., Van Devanter D.R. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis // Nature. – 2000. – Vol. 405, № 6789. – P. 962-966. doi: 10.1038/35016103.

26. World Health Organization. The use of delamanid in the treatment of multidrug-resistant tuberculosis: interim policy guidance. – Geneva: WHO, 2014. – P. 1-65.

27. World Health Organization. Technical manual for drug susceptibility testing of medicines used in the treatment of tuberculosis. – Geneva: WHO, 2018.

28. World Health Organization. Technical report on critical concentration for drug susceptibility testing of medicines used in treatment of drug-resistant tuberculosis. – Geneva: WHO, 2018.

29. World Health Organization. Global Tuberculosis Report 2020: Executive Summary. – Geneva: WHO, 2020.

30. Xia H., Song Y., Zheng Y. et al. Proficiency testing for drug susceptibility testing of Mycobacterium tuberculosis complex using commercial broth microdilution plate in China in 2021 // J. Glob. Antimicrob. Resist. – 2024. – Vol. 36. – P. 230-236. doi: 10.1016/j.jgar.2023.11.012.


Review

For citations:


Mikhailova Y.D., Makarova M.V., Krylova L.Y., Nosova E.Y., Zhirkova S.A., Ushtanit A.I., Zimenkov D.V. Study of drug susceptibility of Mycobacterium tuberculosis to delamanid using BACTECTM MGITTM 960 automated system. Tuberculosis and socially significant diseases. 2024;12(4):25-35. (In Russ.) https://doi.org/10.54921/2413-0346-2024-12-4-25-35

Views: 220


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-0346 (Print)
ISSN 2413-0354 (Online)