Preview

Tuberculosis and socially significant diseases

Advanced search

Therapeutic drug monitoring in the treatment of tuberculosis patients

https://doi.org/10.54921/2413-0346-2024-12-4-54-65

Abstract

Therapeutic drug monitoring (TDM) is one of the most promising technologies for personalized tuberculosis therapy, which can significantly improve the efficacy and safety of treatment in the most complex categories of patients. The applied goal of TDM is to optimize doses of TB drugs based on the control of their serum concentrations during treatment.

The review considers the basic principles, definitions and parameters of TLM, current indications for testing, methods of data collection, analysis and interpretation from the perspective of a practicing phthisiatric physician; analysis of the evidence base is presented. The target populations for implementation of TLM are patients with HIV infection, diabetes mellitus, other severe multicomorbid pathology; pediatric and elderly patients, with delayed response to treatment and high risk of severe adverse reactions.

For effective implementation of TLM it is necessary to conduct controlled studies to assess its clinical and economic results, to develop methods to increase the availability of this technology for the maximum number of TB institutions.

About the Authors

D. A. Ivanova
Moscow Research and Clinical Center for Tuberculosis Control of the Moscow Government Department of Health; Federal State-Funded Educational Institution of Continuing Professional Education «Russian Medical Academy of Continuing Professional Education» of the Ministry of Health of the Russian Federation
Russian Federation

Moscow



N. V. Litvinova
Moscow Research and Clinical Center for Tuberculosis Control of the Moscow Government Department of Health
Russian Federation

Moscow



E. I. Yurovskaya
Moscow Research and Clinical Center for Tuberculosis Control of the Moscow Government Department of Health
Russian Federation

Moscow



E. P. Kubrakova
Moscow Research and Clinical Center for Tuberculosis Control of the Moscow Government Department of Health
Russian Federation

Moscow



Yu. Yu. Mitrofanova
Moscow Research and Clinical Center for Tuberculosis Control of the Moscow Government Department of Health
Russian Federation

Moscow



References

1. Абаимов Д.А., Сариев А.К., Носкова Т.Ю. и др. Современные технологии в терапевтическом лекарственном мониторинге // Эпилепсия и пароксизмальные состояния. – 2013. – Т. 5. – № 2. – С. 31-41.

2. Богородская Е.М., Кудлай Д.А., Литвинов В.И. Проблемы лекарственной устойчивости микобактерий / Под ред. Е.М. Богородской, Д.А. Кудлая, В.И. Литвинова // М.: МНПЦБТ. – 2021. – 504 с.

3. Винокурова М.К., Догорова О.Е., Малогулова И.Ш., Павлова Е.С. Определение концентрации изониазида в сыворотке крови больных туберкулезом легких с множественной лекарственной устойчивостью возбудителя с использованием метода высокоэффективной жидкостной хроматографии // Acta Biomedica Scientifica. – 2018. – Т. 3. – № 2. – С. 75-79.

4. Иванова Д.А., Белиловский Е.М., Богородская Е.М. и др. Влияние сопутствующей патологии на исходы лечения больных туберкулезом // Терапевтический архив. – 2024. – Т. 96. – № 8. – С. 790–796. DOI: 10.26442/00403660.2024.08.202812.

5. Клиническая фармакокинетика: теоретические, прикладные и аналитические аспекты: руководство / Под ред. В.Г. Кукеса. – М.: ГЭОТАР-Медиа, 2009. – 432 с.

6. Клиническая фармакология: национальное руководство / Под ред. В.И. Петрова, Д.А. Сычева, А.Л. Хохлова. – 2-е изд. – М.: ГЭОТАР-Медиа, 2024. – 816 с. – DOI:10.33029/9704-8266-7-СP2-2024-1-816.

7. Клинические рекомендации «Туберкулез у взрослых» / Утв. Минздравом России. – 2024. – Электронный доступ: https://cr.minzdrav.gov.ru/view-cr/16_3.

8. Краснова Н.М., Кравченко А.Ф., Валь Н.С. Принципы рациональной терапии туберкулеза // Эффективная фармакотерапия. – 2019. – Т. 15. – № 27. – С. 20–26. DOI 10.33978/2307-3586-2019-15-27-20-26.

9. Крюков А.В., Сычев Д.А., Рябова А.В. и др. Терапевтический лекарственный мониторинг в клинике внутренних болезней: рекомендации для практикующих врачей с позиции доказательной медицины // Клиническая фармакология и терапия. – 2014. – Т. 23. – № 5. – С. 84–90.

10. Ливчане Э. Лекарственная непереносимость, методы ее диагностики и коррекция при лечении больных туберкулезом легких противотуберкулезными препаратами резервного ряда: Автореф. дисс. … канд. мед. наук. – М., 2003. – 20 с.

11. Попов С.А., Сабгайда Т.П., Можокина Г.Н. и др. Гетерогенность лекарственной устойчивости микобактерий туберкулеза в контексте фармакокинетики противотуберкулезных препаратов как основа персонифицированного лечения. Туберкулез и болезни легких. – 2015. – № 4. – С. 18-23. https://doi.org/10.21292/2075-1230-2015-0-4-18-23.

12. Поручение Министра здравоохранения Российской Федерации: поручение от 07.02.2023 № 19.

13. Приказ Минздрава России от 12.10.2003 № 494 «О совершенствовании деятельности врачей-клинических фармакологов». – Электронный доступ: https://docs.cntd.ru/document/901880261.

14. Толкачев Б.Е., Стрыгин А.В., Аникеев И.С. Терапевтический лекарственный мониторинг с использованием метода «высушенной капли»: проблемы и перспективы // Лекарственный вестник. – 2021. – Т. 15. – № 3 (83). – С. 13-20.

15. Чубарян В.Т. Использование особенностей фармакокинетики противотуберкулезных препаратов с целью оптимизации комбинированной терапии больных туберкулезом легких: Дисс. … д-ра мед. наук. – Волгоград, 2006. – 206 с.

16. Эпидемиология, профилактика и лечение туберкулеза в г. Москве, 2022 г. / Под ред. Е.М. Богородской. – М.: МНПЦБТ, 2023. – 294 с.

17. Alffenaar J.C., Akkerman O.W., Tiberi S. et al. Global Tuberculosis Network Bedaquiline study group. Should we worry about bedaquiline exposure in the treatment of multidrug-resistant and extensively drug-resistant tuberculosis? // Eur. Respir. J. – 2020. – Vol. 55, № 2. – P. 1901908. doi: 10.1183/13993003.01908-2019.

18. Alffenaar J.C., Gumbo T., Dooley K.E. et al. Integrating pharmacokinetics and pharmacodynamics in operational research to end tuberculosis // Clin. Infect. Dis. – 2020. – Vol. 70, № 8. – P. 1774-1780. doi: 10.1093/cid/ciz942.

19. Alffenaar J.C., Tiberi S., Verbeeck R.K. et al. Therapeutic drug monitoring in tuberculosis: practical application for physicians // Clin. Infect. Dis. – 2017. – Vol. 64, № 1. – P. 104-105. doi: 10.1093/cid/ciw677.

20. Alkabab Y., Warkentin J., Cummins J. et al. Therapeutic drug monitoring and TB treatment outcomes in patients with diabetes mellitus // Int. J. Tuberc. Lung Dis. – 2023. – Vol. 27, № 2. – P. 135-139. doi: 10.5588/ijtld.22.0448.

21. Alsultan A., Peloquin C.A. Therapeutic drug monitoring in the treatment of tuberculosis: an update // Drugs. – 2014. – Vol. 74, № 8. – P. 839–854. doi: 10.1007/s40265-014-0222-8.

22. Amorim G., Haas D.W., Cordeiro-Santos M. et al. Regional Prospective Observational Research in Tuberculosis (RePORT)-Brazil network. Estimating optimal therapeutic drug levels of anti-tuberculosis medications based on treatment safety and effectiveness // MedRxiv. – 2024. – 2024.08.30.24312723. – Preprint. doi: 10.1101/2024.08.30.24312723.

23. Anderson G., Vinnard C. Diagnostic accuracy of therapeutic drug monitoring during tuberculosis treatment // J. Clin. Pharmacol. – 2022. – Vol. 62, № 10. – P. 1206-1214. doi: 10.1002/jcph.2068.

24. Asín-Prieto E, Rodríguez-Gascón A, Isla A. Applications of the pharmacokinetic/pharmacodynamic (PK/PD) analysis of antimicrobial agents // J. Infect. Chemother. – 2015. – Vol. 21, № 5. – P. 319-329. doi: 10.1016/j.jiac.2015.02.001.

25. Avataneo V., D’Avolio A., Cusato J. et al. LC-MS application for therapeutic drug monitoring in alternative matrices // J. Pharm. Biomed. Anal. – 2019. – Vol. 166. – P. 40-51. doi: 10.1016/j.jpba.2018.12.040.

26. Bolhuis M.S., van Altena R., van Hateren K. et al. Clinical validation of the analysis of linezolid and clarithromycin in oral fluid of patients with multidrug-resistant tuberculosis // Antimicrob. Agents Chemother. – 2013. – Vol. 57, № 8. – P. 3676-3680. doi: 10.1128/AAC.00558-13.

27. Clinical standards for the dosing and management of TB drugs // Int. J. Tuberc. Lung Dis. – 2022. – Vol. 26, № 6. – P. 483-499.

28. Cooper R., Houston S., Hughes C., Johnston J.C. Treatment of active tuberculosis in special populations. Chapter 10 // Canad. J. Respir., Crit. Care and Sleep Med. – 2022. – Vol. 6, Suppl. 1. – P. 149-166. https://doi.org/10.1080/24745332.2022.2039500.

29. Daskapan A., Idrus L.R, Postma M.J. et al. A systematic review on the effect of HIV infection on the pharmacokinetics of first-line tuberculosis drugs // Clin. Pharmacokinet. – 2019. – Vol. 58, № 6. – P. 747-766. doi: 10.1007/s40262-018-0716-8.

30. Dheda K., Lenders L., Magombedze G. et al. Drug-penetration gradients associated with acquired drug resistance in patients with tuberculosis // Am. J. Respir. Crit. Care Med. – 2018. – Vol. 198, № 9. – P. 1208-1219. doi: 10.1164/rccm.201711-2333OC.

31. Evans D.A., Manley K.A., Mckusick V.A. Genetic control of isoniazid metabolism in man // Br. Med. J. – 1960. – Vol. 2, № 5197. – P. 485-491. doi: 10.1136/bmj.2.5197.485.

32. Fuchs A., Csajka C., Thoma Y. et al. Benchmarking therapeutic drug monitoring software: a review of available computer tools // Clin. Pharmacokinetics. – 2013. – Vol. 52, № 1. – P. 9-22. doi:10.1007/s40262-012-0020-y.

33. Gafar F., Wasmann R.E., McIlleron H.M. et al. Global estimates and determinants of antituberculosis drug pharmacokinetics in children and adolescents: a systematic review and individual patient data meta-analysis / Global Collaborative Group for Meta-Analysis of Paediatric Individual Patient Data in Pharmacokinetics of Anti-TB Drugs // Eur. Respir. J. – 2023. – Vol. 61, № 3. – P. 2201596. doi: 10.1183/13993003.01596-2022.

34. Ghimire S., Bolhuis M.S., Sturkenboom M.G.G. et al. Incorporating therapeutic drug monitoring into the World Health Organization hierarchy of tuberculosis diagnostics // Eur. Respir. J. – 2016. – Vol. 47. – P. 1867-1869. doi:10.1183/13993003.00040-2016.

35. Hong B.L., D‘Cunha R., Li P. et al. A Systematic review and meta-analysis of isoniazid pharmacokinetics in healthy volunteers and patients with tuberculosis // Clin. Ther. – 2020. – Vol. 42, № 11. – P. e220-e241. doi: 10.1016/j.clinthera.2020.09.009.

36. Kafle M.P. Treating tuberculosis in special situations // Bangladesh J. Med. – 2024. – Vol. 35, № 20. – P. 141-142. https://doi.org/10.3329/bjm.v35i20.73388.

37. Laniado-Laborín R. Tuberculosis in special situations: liver and renal disease, pregnancy, extrapulmonary tuberculosis, tuberculosis in immunosuppressed individuals other than HIV, tuberculosis, and diabetes // Tuberculosis: a clinical practice guide. – 2020. – Vol. 1. – P. 59. https://doi.org/10.2174/9789811488511120010010.

38. Lee K., Jun S.H., Choi M.S. et al. Application of the isoniazid assay in dried blood spots using the ultra-performance liquid chromatography-tandem mass spectrometry // Clin. Biochem. – 2017. – Vol. 50, № 15. – P. 882-885. doi: 10.1016/j.clinbiochem.2017.04.010.

39. Li J., Burzynski J.N., Lee Y.A. et al. Use of therapeutic drug monitoring for multidrug-resistant tuberculosis patients // Chest. – 2004. – Vol. 126, № 6. – P. 1770-1776. doi: 10.1378/chest.126.6.1770.

40. Lin B., Hu Y., Xu P. et al. Expert consensus statement on therapeutic drug monitoring and individualization of linezolid // Front Public Health. – 2022. – Vol. 10. – P. 967311. doi: 10.3389/fpubh.2022.967311.

41. Maranchick N.F., Peloquin C.A. Role of therapeutic drug monitoring in the treatment of multi-drug-resistant tuberculosis // J. Clin. Tuberc. Other Mycobact. Dis. – 2024. – Vol. 36. – P. 100444. doi: 10.1016/j.jctube.2024.100444.

42. Margineanu I., Akkerman O., Cattaneo D. et al. Practices of therapeutic drug monitoring in tuberculosis: an international survey // Eur. Respir. J. – 2022. – Vol. 59, № 4. – P. 2102787. doi: 10.1183/13993003.02787-2021.

43. Martson, A.-G., Burch, G., Ghimire, S. et al. Therapeutic drug monitoring in patients with tuberculosis and concurrent medical problems // Expert Opinion on Drug Metabolism & Toxicology. - 2021. – Vol. 17, № 1. – P. 23-39. https://doi.org/10.1080/17425255.2021.1836158.

44. Mave V., Kadam D., Gaikwad S. et al. Measuring TB drug levels in the hair in adults and children to monitor drug exposure and outcomes // Int. J. Tuberc. Lung Dis. – 2021. – Vol. 25, № 1. – P. 52-60. doi: 10.5588/ijtld.20.0574.

45. Medellín-Garibay S.E., Correa-López T., Romero-Méndez C. et al. Limited sampling strategies to predict the area under the concentration-time curve for rifampicin // Ther. Drug Monit. – 2014. – Vol. 36, № 6. – P. 746-751. doi: 10.1097/FTD.0000000000000093.

46. Mehta J.B., Shantaveerapa H., Byrd R.P.J. et al. Utility of rifampin blood levels in the treatment and follow-up of active pulmonary tuberculosis in patients who were slow to respond to routine directly observed therapy // Chest. – 2001. – Vol. 120. – P. 1520-1524.

47. Meloni M., Corti N., Müller D. et al. Cure of tuberculosis despite serum concentrations of antituberculosis drugs below published reference ranges // Swiss Med. Wkly. – 2015. –Vol. 145. – P. w14223. doi: 10.4414/smw.2015.14223.

48. Metwally A.S., El-Sheikh S.M.A., Galal A.A.A. The impact of diabetes mellitus on the pharmacokinetics of rifampicin among tuberculosis patients: a systematic review and meta-analysis study // Diabetes Metab. Syndr. – 2022. – Vol. 16, № 2. – P. 102410. doi: 10.1016/j.dsx.2022.102410.

49. Mota L., Al-Efraij K., Campbell J.R. et al. Therapeutic drug monitoring in anti-tuberculosis treatment: a systematic review and meta-analysis // Int. J. Tuberc. Lung Dis. – 2016. – Vol. 20, № 6. – P. 819-826. doi: 10.5588/ijtld.15.0803.

50. Nahid P., Mase S.R., Migliori G.B. et al. Treatment of drug-resistant tuberculosis. An official ATS/CDC/ERS/IDSA clinical practice guideline // Am. J. Respir. Crit. Care Med. – 2019. – Vol. 200. – P. e93–e142. doi:10.1164/rccm.201909-1874ST.

51. Nahid P., Dorman S.E., Alipanah N. et al. Treatment of drug-susceptible tuberculosis. An official ATS/CDC/ERS/IDSA clinical practice guideline // Clin. Infect. Dis. – 2016. - Vol. 63. – P. e147-e195. doi:10.1093/cid/ciw376.

52. Pasipanodya J.G., Srivastava S., Gumbo T. Meta-analysis of clinical studies supports the pharmacokinetic variability hypothesis for acquired drug resistance and failure of antituberculosis therapy // Clin. Infect. Dis. – 2012. – Vol. 55. – P. 169-177.

53. Peloquin C.A. Therapeutic drug monitoring in the treatment of tuberculosis // Drugs. – 2002. – Vol. 62, № 15. – P. 2169-2183. doi: 10.2165/00003495-200262150-00001.

54. Peloquin C.A. Therapeutic drug monitoring of the antimycobacterial drugs // Clin. Lab. Med. – 1996. – Vol. 16, № 3. – P. 717-729.

55. Pranger A.D., van Altena R., Aarnoutse R.E. et al. Evaluation of moxifloxacin for the treatment of tuberculosis: 3 years of experience // Eur. Respir. J. – 2011. – Vol. 38, № 4. – P. 888-894. doi: 10.1183/09031936.00176610.

56. Ramachandran G., Chandrasekaran P., Gaikwad S. et al. Subtherapeutic rifampicin concentration is associated with unfavorable tuberculosis treatment outcomes / Cohort for Tuberculosis Research by the Indo-US Partnership (CTRIUMPh) Team // Clin. Infect. Dis. – 2020. – Vol. 70, № 7. – P. 1463-1470. doi: 10.1093/cid/ciz380.

57. Rao P.S., Modi N., Nguyen N.T. et al. Аlternative methods for therapeutic drug monitoring and dose adjustment of tuberculosis treatment in clinical settings: a systematic review // Clin. Pharmacokinet. – 2023. - Vol. 62, № 3. – P. 375-398. doi: 10.1007/s40262-023-01220-y.

58. Sarkar M., Sarkar J. Therapeutic drug monitoring in tuberculosis // Eur. J. Clin. Pharmacol. – 2024. – Vol. 80, № 11. – P. 1659-1684. doi: 10.1007/s00228-024-03749-8.

59. Sileshi T., Tadesse E., Makonnen E., Aklillu E. The impact of first-line anti-tubercular drugs‘ pharmacokinetics on treatment outcome: a systematic review // Clin. Pharmacol. – 2021. – Vol. 13. – P. 1-12. doi: 10.2147/CPAA.S289714.

60. Technical report on the pharmacokinetics and pharmacodynamics (PK/PD) of medicines used in the treatment of drug-resistant tuberculosis / (WHO/CDS/TB/2018.6). Licence: CC BY-NC-SA 3.0 IGO. – Geneva: World Health Organization, 2018.

61. Thomas T.A., Lukumay S., Yu S. et al. Rifampin urinary excretion to predict serum targets in children with tuberculosis: a prospective diagnostic accuracy study // Arch. Dis. Child. – 2023. – Vol. 108, № 8. – P. 616-621. doi: 10.1136/archdischild-2022-325250.

62. Thu N.Q., Tien N.T.N, Yen N.T.H. et al. Push forward LC-MS-based therapeutic drug monitoring and pharmacometabolomics for anti-tuberculosis precision dosing and comprehensive clinical management // J. Pharm. Anal. – 2024. – Vol. 14, № 1. – P. 16-38. doi: 10.1016/j.jpha.2023.09.009.

63. Trentalange A., Borgogno E., Motta I. et al. Rifampicin and isoniazid maximal concentrations are below efficacy-associated thresholds in the majority of patients: time to increase the doses? // Int. J. Antimicrob. Agents. – 2021. – Vol. 57, № 3. – P. 106297. doi: 10.1016/j.ijantimicag.2021.106297.

64. Van den Elsen S.H.J., Oostenbrink L.M., Heysell S.K. et al. Systematic review of salivary versus blood concentrations of antituberculosis drugs and their potential for salivary therapeutic drug monitoring // Ther. Drug Monit. – 2018. – Vol. 40, № 1. – P. 17-37. doi: 10.1097/FTD.0000000000000462.

65. WHO consolidated guidelines on tuberculosis. Module 6: tuberculosis and comorbidities / Licence: CC BY-NC-SA 3.0 IGO. – Geneva: World Health Organization, 2024.

66. WHO. Global Tuberculosis Report 2024. – Geneva: World Health Organization, 2024. – P. 1-68. –URL: https://worldhealthorg.shinyapps.io/tb_profiles/

67. WHO Operational handbook on tuberculosis. Module 4: Treatment – drug-susceptible tuberculosis treatment. - Geneva: World Health Organization; 2022.

68. WHO Operational Handbook on Tuberculosis: Module 4: Treatment: drug-resistant tuberculosis treatment / Licence: CC BY-NC-SA 3.0 IGO. – Geneva: World Health Organization, 2020.

69. Wilby K.J., Hussain F.N. A review of clinical pharmacokinetic and pharmacodynamic relationships and clinical implications for drugs used to treat multidrug-resistant tuberculosis // Eur. J. Drug Metab. Pharmacokinet. – 2020. – Vol. 45. – P. 305-313. https://doi.org/10.1007/s13318-019-00604-5.

70. Xavier R.M., Sharumathi S.M., Kanniyappan P.A. et al. Limited sampling strategies for therapeutic drug monitoring of anti-tuberculosis medications: a systematic review of their feasibility and clinical utility // Tuberculosis (Edinb.). – 2023. – Vol. 141. – P. 102367. doi: 10.1016/j.tube.2023.102367.


Review

For citations:


Ivanova D.A., Litvinova N.V., Yurovskaya E.I., Kubrakova E.P., Mitrofanova Yu.Yu. Therapeutic drug monitoring in the treatment of tuberculosis patients. Tuberculosis and socially significant diseases. 2024;12(4):54-65. (In Russ.) https://doi.org/10.54921/2413-0346-2024-12-4-54-65

Views: 317


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-0346 (Print)
ISSN 2413-0354 (Online)