Preview

Tuberculosis and socially significant diseases

Advanced search

MOLECULAR MECHANISMS UNDERLYING EXTENSIVELY DRUG-RESISTANT TUBERCULOSIS, AND ASSAYS AVAILABLE FOR ITS DETECTION

Abstract

Considering the growing outspread of drug-resistant strains of M. tuberculosis, a clear understanding of the molecular mechanisms underlying drug-resistance of the pathogen to different groups of antibiotics is crucial. Fluoroquinolone-resistant M. tuberculosis generally harbor various mutations in the gyrA and gyrB genes, mostly in the QRDR region. M. tuberculosis resistance to aminoglycosides/ capreomycin is commonly associated with mutations in the rrs, gene, the eis promoter region, and occasionally in the tlyA gene. Two assays are available for the detection of mutations leading to fluoroquinolone and aminoglycoside resistance in clinical practice: the TB-BIOCHIP2 (only for fluoroquinolones) and the GenoType MTBDRsl.

About the Authors

E. Yu. Nosova
ГКУЗ «Московский городской научно-практический центр борьбы с туберкулёзом Департамента здравоохранения города Москвы»
Russian Federation


M. B. Gikalo
ГКУЗ «Московский городской научно-практический центр борьбы с туберкулёзом Департамента здравоохранения города Москвы»
Russian Federation


A. A. Hahalina
ГКУЗ «Московский городской научно-практический центр борьбы с туберкулёзом Департамента здравоохранения города Москвы»
Russian Federation


K. Yu. Galkina
ГКУЗ «Московский городской научно-практический центр борьбы с туберкулёзом Департамента здравоохранения города Москвы»
Russian Federation


S. G. Safonova
ГКУЗ «Московский городской научно-практический центр борьбы с туберкулёзом Департамента здравоохранения города Москвы»
Russian Federation


References

1. Сон И.М., Стерликов С.А., Скачкова Е.И. и др. Выявление микобактерий туберкулёза и определение лекарственной чувствительности с использованием биологических чипов.– М.: РИО ЦНИИОИЗ. – 2009. – 52 с.

2. Brossier F., Veziris N., Aubry A., et al. Detection by Genotype MTBDRsl test of complex resistance mechanisms to second-line drugs and ethambutol in multidrug-resistant Mycobacterium tuberculosis complex isolates // J. Clin. Microbiol. – 2010. – Vol. 48. – P. 1683–1689.

3. Campbell P., Morlock G., Sikes R. et al. Molecular detection of mutations associated with first- and second-line drug resistance compared with conventional drug susceptibility testing of Mycobacterium tuberculosis // Antimicrob. Agents Chemother. – 2011. – Vol. 55– P. 2032-2041.

4. Chan R., Hui M., Chan E. et al. Genetic and phenotypic characterization of drug-resistant Mycobacterium tuberculosis isolates in Hong Kong // J. Antimicrob. Chemother. – 2007. – Vol. 59. – P. 866–673.

5. Conde M., Efron A., Loredo C. et al. Moxifloxacin versus ethambutol in the initial treatment of tuberculosis: a double-blind, randomised, controlled phase II trial // Lancet. – 2009. – Vol. 373. – N. 9670. – P. 1183-1189.

6. Cui Z., Wang J., Lu J. et al. Association of mutation patterns in gyrA/B genes and ofloxacin resistance levels in Mycobacterium tuberculosis isolates from East China in 2009 // BMC Infect. Dis. – 2011. – 11:78.

7. Duong D., Nguyen T., Nguyen T. et al. Beijing genotype of Mycobacterium tuberculosis is significantly associated with high-level fluoroquinolone resistance in Vietnam // Antimicrob. Agents Chemother. – 2009. – Vol. 53. – P. 4835-4839.

8. El Sahly H., Teeter L., Jost K. et al. Incidence of moxifloxacin resistance in clinical Mycobacterium tuberculosis isolates in Houston, Texas // J. Clin. Microbiol. – 2011. – Vol. 49. – P. 2942-2945.

9. Engström A., Perskvist N., Werngren J. et al. Comparison of clinical isolates and in vitro selected mutants reveals that tlyA is not a sensitive genetic marker for capreomycin resistance in Mycobacterium tuberculosis // J. Antimicrob. Chemother. – 2011. – Vol. 66. – P. 1247-1254.

10. Feuerriegel S., Cox H., Zarkua N. et al. Sequence analyses of just four genes to detect extensively drug-resistant Mycobacterium tuberculosis strains in multidrug-resistant tuberculosis patients undergoing treatment // Antimicrob. Agents Chemother. – 2009. – Vol. 53. – P. 3353-3356.

11. Gikalo M., Nosova E., Krylova L., Moroz A. The role of eis mutations in the development of kanamycin resistance in Mycobacterium tuberculosis isolates from the Moscow region // J. Antimicrob. Chemother. – 2012. – Vol. 67. – P. 2107-2109.

12. Ginsburg A., Grosset J., Bishai W. Fluoroquinolones, tuberculosis, and resistance // Lancet Infect. Dis. – 2003. – Vol. 3. – P. 432-442.

13. Hegde S., Vetting M., Roderick S. et al. A fluoroquinolone resistance protein from Mycobacterium tuberculosis that mimics DNA // Science. – 2005. – Vol. 308. – N. 5727. – P. 1480-1483.

14. Hillemann D., Rusch-Gerdes S., Richter E. Feasibility of the GenoType MTBDRsl assay for fluoroquinolone, amikacin-capreomycin, and ethambutol resistance testing of Mycobacterium tuberculosis strains and clinical specimens // J. Clin. Microbiol. – 2009. – Vol. 47. – P. 1767-1772.

15. Ji Y., Colston M., Cox R. The ribosomal RNA (rrn) operons of fast-growing mycobacteria: primary and secondary structures and their relation to rrn operons of pathogenic slow-growers // Microbiology. – 1994. – Vol. 140. – P. 2829-2840.

16. Jnawali H., Yoo H., Ryoo S. et al. Molecular genetics of Mycobacterium tuberculosis resistant to aminoglycosides and cyclic peptide capreomycin antibiotics in Korea // World J. Microbiol. Biotechnol. – 2013. – Vol. 29. – P. 975-982.

17. Kam K., Yip C., Cheung T. et al. Stepwise decrease in moxifloxacin susceptibility amongst clinical isolates of multidrug-resistant Mycobacterium tuberculosis: correlation with ofloxacin susceptibility // Microb. Drug Resist. – 2006. – Vol. 12. – P. 7-11.

18. Kim D., Kim H., Park S. et al. Treatment outcomes and long-term survival in patients with extensively drug-resistant tuberculosis // Am. J. Respir. Crit. Care Med. – 2008. – Vol.178. – P. 1075-1082.

19. Krüüner A., Jureen P., Levina K. et al. Discordant resistance to kanamycin and amikacin in drug-resistant Mycobacterium tuberculosis // Antimicrob. Agents Chemother. – 2003. – Vol. 47. – P. 2971-2973.

20. Malik M., Zhao X., Drlica K. Lethal fragmentation of bacterial chromosomes mediated by DNA gyrase and quinolones // Mol. Microbiol. – 2006. – Vol. 61. – P. 810-825.

21. Malik S., Willby M., Sikes D. et al. New insights into fluoroquinolone resistance in Mycobacterium tuberculosis: functional genetic analysis of gyrA and gyrB mutations // PLoS One. – 2012. – Vol. 7. – e39754.

22. Maruri F., Sterling T., Kaiga A. et al. A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrase numbering system // J. Antimicrob. Chemother. – 2012. – Vol. 67. – P. 819-831.

23. Matrat S., Veziris N., Mayer C. et al. Functional analysis of DNA gyrase mutant enzymes carrying mutations at position 88 in the A subunit found in clinical strains of Mycobacterium tuberculosis resistant to fluoroquinolones // Antimicrob. Agents Chemother. – 2006. – Vol. 50. – P. 4170-4173.

24. Maus C., Plikaytis B., Shinnick T. Mutation of tlyA confers capreomycin resistance in Mycobacterium tuberculosis // Antimicrob. Agents Chemother. – 2005. – Vol. 49. – P. 571-577.

25. Mokrousov I., Otten T., Manicheva O. et al. Molecular characterization of ofloxacin-resistant Mycobacterium tuberculosis strains from Russia //Antimicrob. Agents Chemother. – 2008. – Vol. 52. – P. 2937-2939.

26. Nosova E., Bukatina A., Isaeva Yu. et al. Analysis of mutations in the gyrA and gyrB genes and their association with the resistance of Mycobacterium tuberculosis to levofloxacin, moxifloxacin and gatifloxacin // J. Med. Microbiol. – 2013. – Vol. 62. – P. 108-113.

27. Pantel A., Petrella S., Matrat S. et al. DNA gyrase inhibition assays are necessary to demonstrate fluoroquinolone resistance secondary to gyrB mutations in Mycobacterium tuberculosis // Antimicrob. Agents Chemother. – 2011. – Vol. 55. – P.4524-4529.

28. Perdigão J., Macedo R., Malaquias A. et al. Genetic analysis of extensively drug-resistant Mycobacterium tuberculosis strains in Lisbon, Portugal // J. Antimicrob. Chemother. – 2010. – Vol. 65. – P. 224-227.

29. Poissy J., Aubry A., Fernandez C. et al. Should moxifloxacin be used for the treatment of extensively drug-resistant tuberculosis? An answer from a murine model // Antimicrob. Agents Chemother. – 2010. – Vol. 54. – P. 4765-4771.

30. Shi R., Zhang J., Li C. et al. Emergence of ofloxacin resistance in Mycobacterium tuberculosis clinical isolates from China as determined by gyrA mutation analysis using denaturing high-pressure liquid chromatography and DNA sequencing // J. Clin. Microbiol. – 2006. – Vol. 44. – P. 4566-4568.

31. Sulochana S., Narayanan S., Paramasivan C. et al. Analysis of fluoroquinolone resistance in clinical isolates of Mycobacterium tuberculosis from India // J. Chemother. – 2007. – Vol. 19. – P. 166–171.

32. Suzuki Y., Katsukawa C., Tamaru A. et al. Detection of kanamycin-resistant Mycobacterium tuberculosis by identifying mutations in the 16S rRNA gene // J. Clin. Microbiol. – 1998. – Vol. 5. – P. 1220-1225.

33. van Doorn H., An D., de Jong M., et al. Fluoroquinolone resistance detection in Mycobacterium tuberculosis with locked nucleic acid probe real-time PCR // Int. J. Tuberc. Lung Dis. – 2008. – Vol. 12. – P. 736-742.

34. Von Groll A., Martin A., Jureen P. et al. Fluoroquinolone resistance in Mycobacterium tuberculosis and mutations in gyrA and gyrB // Antimicrob. Agents Chemother. – 2009. – Vol. 53. – P. 4498–4500.

35. Wang J., Lee L., Lai H. et al. Fluoroquinolone resistance in Mycobacterium tuberculosis isolates: associated genetic mutations and relationship to antimicrobial exposure // J. Antimicrob. Chemother. – 2007. – Vol. 59. – P. 860-865.

36. Yin, X., Yu, Z. Mutation characterization of gyrA and gyrB genes in levofloxacin-resistant Mycobacterium tuberculosis clinical isolates from Guangdong Province in China // J. Infect. – 2010. – Vol. 61. – P. 150–154.

37. Zaunbrecher M., Sikes R., Metchock B. et al. Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis // Proc. Natl. Acad. Sci. USA. – 2009. – Vol. 106. – P. 20004–20009.

38. Zhou J., Dong Y., Zhao X. Et al. Selection of antibiotic-resistant bacterial mutants: allelic diversity among fluoroquinolone-resistant mutations // J. Infect. Dis. – 2000 – Vol. 182. – P. 517-525.


Review

For citations:


Nosova E.Yu., Gikalo M.B., Hahalina A.A., Galkina K.Yu., Safonova S.G. MOLECULAR MECHANISMS UNDERLYING EXTENSIVELY DRUG-RESISTANT TUBERCULOSIS, AND ASSAYS AVAILABLE FOR ITS DETECTION. Tuberculosis and socially significant diseases. 2013;(2):56-60. (In Russ.)

Views: 35


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-0346 (Print)
ISSN 2413-0354 (Online)