Problems of drug resistance of M. tuberculosis
https://doi.org/10.54921/2413-0346-2021-12-2-70-82
Abstract
The review presents the latest information on the mechanisms of development of drug resistance of M. tuberculosis and methods for studying the drug sensitivity of mycobacteria
About the Authors
V. I. LitvinovRussian Federation
E. Yu. Nosova
Russian Federation
References
1. Противотуберкулезная работа в городе Москве. Аналитический обзор статистических показателей по туберкулезу, 2018 г. / Под ред. Е.М. Богородской, В.И. Литвинова, Е.М. Белиловского. – М.: МНПЦБТ, 2019. – 216 с.
2. Борисов С.Е., Белиловский Е.М., Данилова И.Д., Рыбка Л.Н. Туберкулез с множественной лекарственной устойчивостью возбудителя // Противотуберкулезная работа в городе Москве. Аналитический обзор статистических показателей по туберкулезу, 2018 г. / Под ред. Е.М. Богородской, В.И. Литвинова, Е.М. Белиловского. – М.: МНПЦБТ, 2019. – С. 95-105.
3. Васильева И.А., Белиловский Е.М., Борисов С.Е., Стерликов С.А. Туберкулез с множественной лекарственной устойчивостью возбудителя в странах мира и в Российской Федерации // Туберкулез и болезни легких. – 2017. – Т. 95. – № 11. – С. 5-18.
4. Исаева Е.Л. Генетические мутации микобактерии туберкулеза, ответственные за резистентность к рифампицину у больных туберкулезом: идентификация и характеристика: Дисс. ... канд. мед. наук. – М., 2002. – 103 с.
5. Клиническая фармакокинетика: теоретические, прикладные и аналитические аспекты: руководство / Под ред. В.Г. Кукеса. – М.: ГЭОТАР-Медиа, 2009. – 2009. – 432 с.
6. Лабораторные исследования при туберкулезе / Под ред. В.И. Литвинова, А.М. Мороза. – М.: МНПЦБТ, 2013. – 342 с.
7. Макарова М.В., Крылова Л.Ю., Носова Е.Ю., Литвинов В.И. Характеристика штаммов M. tuberculosis с широкой лекарственной устойчивостью с помощью тест-системы Sensititre MycoTB (предпосылки для внесения корректив в лечение больных туберкулезом с широкой лекарственной устойчивостью возбудителя) // Туберкулез и социально значимые заболевания. – 2016. – № 2. – С. 38-43.
8. Мирзабеков А.Д. Биочипы в биологии и медицине XXΙ века // Вестник РАН. – 2003. – Т. 73. – № 5. – С. 412.
9. Михайлова Ю.Д., Макарова М.В., Кудлай Д.А., Перетокина И.В., Сафонова С.Г., Литвинова Н.В., Крылова Л.Ю. Количественная оценка чувствительности Mycobacterium tuberculosis к линезолиду // Туберкулез и социально значимые заболевания. – 2019. – № 1. – С. 19-24.
10. Носова Е.Ю., Галкина К.Ю., Антонова О.В., Гармаш Ю.Ю., Скотникова О.И., Мороз А.М. Молекулярно-биологический микрочип «ТБ-БИОЧИП-2» для определения чувствительности Mycobacterium tuberculosis с множественной лекарственной устойчивостью к фторхинолонам у больных с впервые выявленным и хроническим течением туберкулеза // Вестник РАМН. – 2008. – № 3. – С. 16-19.
11. Носова Е.Ю., Хахалина А.А., Исакова А.И., Галкина К.Ю., Краснова М.А., Макарова М.В. Одновременное определение генетических детерминант широкой лекарственной устойчивости и генотипирование M. tuberculosis с помощью гибридизационного анализа на биочипах // Туберкулез и социально значимые заболевания. – 2016. – № 2. – С. 24-32.
12. Перетокина И.В., Крылова Л.Ю., Сафонова С.Г., Макарова М.В., Носова Е.Ю., Литвинов В.И. Определение пограничного значения минимальной ингибирующей концентрации бедаквилина в отношении чувствительных клинических штаммов Mycobacterium tuberculosis на разных питательных средах // Туберкулез и социально значимые заболевания. – 2018. – № 3. – С. 32-35.
13. Перетокина И.В., Крылова Л.Ю., Михайлова Ю.Д., Сафонова С.Г., Макарова М.В. Определение минимальных ингибирующих концентраций бедаквилина для оценки лекарственной чувствительности микобактерий туберкулеза // Туберкулез и болезни легких. – 2019. – Т. 97. – № 6. – С. 64-65.
14. Скотникова О.И. Применение новых молекулярно-биологических технологий для выявления Mycobacterium tuberculosis с множественной лекарственной устойчивостью: Дисс. ... док. биол. наук. – М., 2008. – 215 с.
15. Черноусова Л.Н., Андреевская С.Н., Смирнова Т.Г., Ларионова Е.Е., Ивахненко О.И., Новоселова Е.А., Шевкун Н.А. Лекарственно-устойчивый туберкулез: перспективы ускоренной диагностики и химиотерапии // Бактериология. – 2017. – № 1. – С. 25-34.
16. Ahmad N., Javaid A., Sulaiman S., Ming L., Ahmad I., Khan A. Resistance patterns, prevalence, and predictors of fluoroquinolones resistance in multidrug resistant tuberculosis patients // Braz. J. Infect. Dis. – 2016. – Vol. 20. – N. 1. – P. 41-47. doi: 10.1016/j.bjid.2015.09.011.
17. Ahmad S., Jaber A., Mokaddas E. Frequency of embB codon 306 mutations in ethambutol-susceptible and -resistant clinical Mycobacterium tuberculosis isolates in Kuwait // Tuberculosis (Edinb.). – 2007. – Vol. 87. – P. 123-129.
18. Alcaide F., Esteban J., González-Martin J., Palacios J. Methods for determining the antimicrobial susceptibility of mycobacteria // Enferm. Infecc. Microbiol. Clin. – 2017. – Vol. 35. – N. 8. – P. 529-535. doi: 10.1016/j.eimc.2016.04.008.
19. Alsultan A., Savic R., Dooley K. et al. Population Pharmacokinetics of Pyrazinamide in Patients with Tuberculosis // Antimicrob. Agents. Chemother. – 2017. – Vol. 61. – N. 6: e02625-16. doi:10.1128/AAC.02625-1.
20. Andries K., Villellas C., Coeck N., Thys K., Gevers T., Vranckx L. et al. Acquired resistance of Mycobacterium tuberculosis to bedaquiline // PLoS One. – 2014. – Vol. 9. – N. 7: e102135. doi: 10.1371/journal.pone.0102135.
21. Asín-Prieto E., Rodríguez-Gascón A., Isla A. Applications of the pharmacokinetic/pharmacodynamic (PK/PD) analysis of antimicrobial agents // J. Infect. Chemother. – 2015. – Vol. 21. – N. 5. – P. 319-329. doi: 10.1016/j.jiac.2015.02.001.
22. Bahuguna A., Rawat D. An overview of new antitubercular drugs, drug candidates, and their targets // Med. Res. Rev. – 2020. – Vol. 40. – N. 1. – P. 263‐292. doi:10.1002/med.21602.
23. Beckert P., Hillemann D., Kohl T., Kalinowski J., Richter E., Niemann S. et al. rplC T460C identified as a dominant mutation in linezolid-resistant Mycobacterium tuberculosis strains // Antimicrob. Agents. Chemother. – 2012. – Vol. 56. – P. 2743-2745.
24. Blair H., Scott L. Delamanid: a review of its use in patients with multidrug-resistant tuberculosis // Drugs. – 2015. – Vol. 75. – N. 1. – P. 91‐100. doi:10.1007/s40265-014-0331-4.
25. Borah P., Deb P., Venugopala K., Al-Shari N., Singh V., Deka S. et al. Tuberculosis: an update on pathophysiology, molecular mechanisms of drug resistance, newer anti-tb drugs, treatment regimens and host-directed therapies // Curr. Top. Med. Chem. – 2020. – Dec 11. doi: 10.2174/1568026621999201211200447.
26. Borisov S., Dheda K., Enwerem M., Romero Leyet R., D’Ambrosio L., Centis R. et al. Effectiveness and safety of bedaquiline-containing regimens in the treatment of MDR- and XDR-TB: a multicenter study // Eur. Respir. J. – 2017. – Vol. 49. – N. 5:1700387. doi: 10.1183/13993003.00387-2017.
27. Borrell S., Gagneux S. Infectiousness, reproductive fitness and evolution of drug-resistant Mycobacterium tuberculosis // Int. J. Tuberc. Lung Dis. – 2009. – Vol. 13. – P. 1456-1466.
28. Brennan P., Nikaido H. The envelope of mycobacteria // Ann. Rev. Biochem. – 1995. – Vol. 64. – P. 29-63.
29. Burian J., Ramón-García S., Sweet G., Gómez-Velasco A., Av-Gay Y., Thompson C. The mycobacterial transcriptional regulator whiB7 gene links redox homeostasis and intrinsic antibiotic resistance // J. Biol. Chem. – 2012. – Vol. 287. – P. 299-310.
30. Chakravorty S., Lee J., Cho E., Roh S., Smith L., Lee J. et al. Genotypic susceptibility testing of Mycobacterium tuberculosis isolates for amikacin and kanamycin resistance by use of a rapid sloppy molecular beacon-based assay identifies more cases of low-level drug resistance than phenotypic Lowenstein-Jensen testing // J. Clin. Microbiol. – 2015. – Vol. 53. – N. 1. – P.43-51.
31. Cheng S., Cui Z., Li Y., Hu Z. Diagnostic accuracy of a molecular drug susceptibility testing method for the antituberculosis drug ethambutol: a systematic review and meta-analysis // J. Clin. Microbiol. – 2014. – Vol. 52. – P. 2913-2924.
32. Chiang S., Brooks M., Jenkins H., Rubenstein D., Seddon J., van de Water B. et al. Concordance of drug resistance profiles between persons with drug-resistant tuberculosis and their household contacts: a systematic review and meta-analysis // Clin. Infect. Dis. – 2020. – May 25: ciaa613. doi: 10.1093/cid/ciaa613.
33. Chisompola NK, Streicher EM, Muchemwa CMK, Warren RM, Sampson SL. Molecular epidemiology of drug resistant Mycobacterium tuberculosis in Africa: a systematic review // BMC Infect. Dis. – 2020. – Vol. 20. – N. 1:344. doi: 10.1186/s12879-020-05031-5.
34. Cho S., Lee H., Franzblau S. Microplate Alamar Blue Assay (MABA) and Low Oxygen Recovery Assay (LORA) for Mycobacterium tuberculosis // Methods. Mol. Biol. – 2015. – 1285. – P. 281-292. doi: 10.1007/978-1-4939-2450-9_17.
35. CLSI. Clinical and Laboratory Standards Institute. Susceptibility testing of mycobacteria, nocardiae, and other aerobic actinomycetes; approved standard – second edition: document M24-A2. – CLSI, Wayne, PA, USA, 2011.
36. CLSI. Susceptibility testing of mycobacteria, Nocardia spp., and other aerobic actinomycetes, 3rd ed, CLSI standard document M24. Clinical and Laboratory Standards Institute, 2018. – Wayne, PA., 2018.
37. Coban A., Deveci A., Sunter A., Palomino J., Martin A. Resazurin microtiter assay for isoniazid, rifampicin, ethambutol and streptomycin resistance detection in Mycobacterium tuberculosis: Updated meta-analysis // Int. J. Mycobacteriol. – 2014. – Vol. 3. – N. 4. – P. 230-241. doi: 10.1016/j.ijmyco.2014.09.002.
38. Coban A., Akbal A., Uzun M., Durupinar B. et al. Evaluation of four colourimetric susceptibility tests for the rapid detection of multidrug-resistant Mycobacterium tuberculosis isolates //Mem. Inst. Oswaldo. Cruz. – 2015. – Vol. 110. – N. 5. – P. 649-654. doi: 10.1590/0074-02760150136.
39. D’Ambrosio L., Centis R., Tiberi S., Tadolini M., Dalcolmo M., Rendon A. et al. Delamanid and bedaquiline to treat multidrug-resistant and extensively drug-resistant tuberculosis in children: a systematic review // J. Thorac. Dis. – 2017. – Vol. 9. – N. 7. – P. 2093-2101. doi: 10.21037/jtd.2017.06.16.
40. Danilchanka O., Pavlenok M., Niederweis M. Role of porins for uptake of antibiotics by Mycobacterium smegmatis // Antimicrob. Agents. Chemother. – 2008. – Vol. 52. – N. 9. – P. 3127-3134.
41. Deshpande D., Alffenaar J., Köser C., Dheda K. et al. The detection of medication sensitivity of M. tuberculosis isolated from patients with tuberculosis with multiple medication resistance in test-system «Sensititre MycoTB» // Clin. Infect. Dis. – 2018. – Vol. 28. – Suppl. 3. – S308-S316. doi: 10.1093/cid/ciy624.
42. Dheda K., Gumbo T., Gandhi N. et al. Global control of tuberculosis: from extensively drug-resistant to untreatable tuberculosis // Lancet. Respir. Med. – 2014. – Vol. 2. – N. 4. – P. 321-338.
43. Dheda K., Gumbo T., Maartens G. et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis // Lancet. Respir. Med. – 2017. – S2213-2600(17) 30079-6. doi:10.1016/S2213-2600(17)30079-6.
44. Dixit P., Singh U., Sharma P., Jain A., Dixit P. et al. Evaluation of nitrate reduction assay, resazurin microtiter assay and microscopic observation drug susceptibility assay for first line antitubercular drug susceptibility testing of clinical isolates of M. tuberculosis // J. Microbiol. Methods. – 2012. – Vol. 88. – N. 1. – P. 122-126. doi: 10.1016/j.mimet.2011.11.006.
45. Dodd P., Sismanidis C., Seddon J. et al. Global burden of drug-resistant tuberculosis in children: a mathematical modelling study // Lancet. Infect. Dis. – 2016. – Vol. 16. – N. 10. – P. 1193-1201.
46. Engström A, Antonenka U, Kadyrov A, et al. Population structure of drug-resistant Mycobacterium tuberculosis in Central Asia // BMC Infect. Dis. – 2019. – Vol. 19. – N. 1:908. Published 2019 Oct 29. doi:10.1186/s12879-019-4480-7.
47. FDA. Anti-Infective Drugs Advisory Committec Meeting. Silver Spring, MD, Nov. 28, 2012, Sirturo™ (bedaquilin).
48. Fenner L., Egger M., Bodmer T., Altpeter E., Zwahlen M., Jaton K. et al. Effect of mutation and genetic background on drug resistance in Mycobacterium tuberculosis // Antimicrob. Agents. Chemother. – 2012. – Vol. 56. – P. 3047-3053.
49. Ferber D. Biochemistry. Protein that mimics DNA helps tuberculosis bacteria resist antibiotics // Science. – 2005. – Vol. 308. – N. 5727. – 1480 p.
50. Flores A., Parsons L., Pavelka M. Genetic analysis of the beta-lactamases of Mycobacterium tuberculosis and Mycobacterium smegmatis and susceptibility to beta-lactam antibiotics // Microbiology. – 2005. – Vol. 151. – P. 521-532.
51. Georghiou S., Magana M., Garfein R., Catanzaro D., Catanzaro A., Rodwell T. Evaluation of genetic mutations associated with Mycobacterium tuberculosis resistance to amikacin, kanamycin and capreomycin: a systematic review // PLoS One. – 2012. – Vol. 7. – N. 3. – e33275.
52. Ginsburg A., Grosset J., Bishai W. Fluoroquinolones, tuberculosis, and resistance // Lancet Infect. Dis. – 2003. – Vol. 3. – P. 432-442.
53. Goossens S., Sampson S., Van Rie A. Mechanisms of Drug-Induced Tolerance in Mycobacterium tuberculosis // Clin. Microbiol. Rev. – 2020. – Vol. 34. – N. 1:e00141-20. doi: 10.1128/CMR.00141-20.
54. Grace Lin S-Y., Desmond E., Bonato D., Gross W., Siddiqi S. Multicenter Evaluation of Bactec MGIT 960 System for Second-Line Drug Susceptibility Testing of Mycobacterium Tuberculosis Complex // J. Clin. Microbiol. – 2009. – Vol. 47. – N. 11. – P. 3630-3634. doi: 10.1128/JCM.00803-09.
55. Hameed H., Islam M., Chhotaray C. et al. Molecular Targets Related Drug Resistance Mechanisms in MDR-, XDR-, and TDR-Mycobacterium tuberculosis Strains // Front. Cell. Infect. Microbiol. – 2018. – Vol. 8:114. Published 2018 Apr 10. doi:10.3389/fcimb.2018.00114.
56. Hargreaves S., Lönnroth K., Nellums L. et al. Response to Letter to the Editor by M. van der Werf, V. Hollo and C. Ködmön concerning ‘Multidrug-resistant tuberculosis and migration to Europe’ // Clin. Microbiol. Infect. – 2017. – Vol. 23. – N. 8. – P. 580. doi: 10.1016/j.cmi.2017.02.022.
57. Hashemian S., Farhadi T., Ganjparvar M. Linezolid: a review of its properties, function, and use in critical care // Drug Des. Devel. Ther. – 2018. – Vol. 12. – P. 1759-1767. Published 2018 Jun 18. doi:10.2147/DDDT.S164515.
58. Hashmi H., Javed H., Jamil N. Emerging epidemic of drug resistant tuberculosis in vulnerable populations of developing countries // Afr. Health. Sci. – 2017. – Vol. 17. – N. 2. – P. 599-602.
59. Heifets L. Drug susceptibility in the chemotherapy of mycobacterial infections. – CRC Press. Boca Raton Ann Arbor Boston. London. – 2000. – 212 p.
60. Huitric E., Verhasselt P., Koul A., Andries K., Hoffner S. et al. Rates and mechanisms of resistance development in Mycobacterium tuberculosis to a novel diarylquinoline ATP synthase inhibitor // Antimicrob. Agents. Chemother. – 2010. – Vol. 54. – P. 1022-1028.
61. Huynh J., Marais B. Multidrug-resistant tuberculosis infection and disease in children: a review of new and repurposed drugs // Ther. Adv. Infect. Dis. – 2019. – Vol. 6:2049936119864737. doi:10.1177/2049936119864737.
62. Ismail N., Omar S., Ismail N., Peters R. Collated data of mutation frequencies and associated genetic variants of bedaquiline, clofazimine and linezolid resistance in Mycobacterium tuberculosis // Data Brief. 2018. – Vol. 20. – P. 1975-1983. Published 2018 Sep 24. doi:10.1016/j.dib.2018.09.057.
63. Jaglal P., Pillay M., Mlisana K. Resazurin microtitre plate assay and Sensititre® MycoTB for detection of Mycobacterium tuberculosis resistance in a high tuberculosis resistance setting // Afr. J. Lab. Med. – 2019. – Vol. 8. – N. 1: 840. doi: 10.4102/ajlm.v8i1.840.
64. Jang J., Jung Y., Choi J., Jung H., Ryoo S. Bedaquiline susceptibility test for totally drug-resistant tuberculosis Mycobacterium tuberculosis // J. Microbiol. – 2017. – Vol. 55. – N. 6. – P. 483-487. doi: 10.1007/s12275-017-6630-1.
65. Jarlier V., Nikaido H. Mycobacterial cell wall: structure and role in natural resistance to antibiotics // FEMS Microbiol. Lett. – 1994. – Vol. 123. – P. 11-18.
66. Kadura S., King N., Nakhoul M. et al. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid // J. Antimicrob. Chemother. – 2020. – dkaa136. doi:10.1093/jac/dkaa136.
67. Kaniga K., Cirillo D., Hoffner S., Ismail N., Kaur D., Lounis N. et al. A multilaboratory, multicountry study to determine mic quality control ranges for phenotypic drug susceptibility testing of selected first-line antituberculosis drugs, second-line injectables, fluoroquinolones, clofazimine, and linezolid // J. Clin. Microbiol. – 2016. – Vol. 54. – N. 12. – P. 2963-2968.
68. Karekar S., Marathe P. Current Status of Delamanid in the Management of MDR Tuberculosis // J. Assoc. Physicians. India. – 2018. – Vol. 66. – N. 7. – P. 72‐75.
69. Keller P., Hömke R., Ritter C., Valsesia G., Bloemberg G., Böttger E. Determination of MIC distribution and epidemiological cutoff values for bedaquiline and delamanid in Mycobacterium tuberculosis using the MGIT 960 system equipped with TB eXiST // Antimicrob. Agents. Chemother. – 2015. – Vol. 59. – N. 7. – P. 4352-4355. doi: 10.1128/AAC.00614-15.
70. Khawbung J., Nath D., Chakraborty S. Drug resistant tuberculosis: a review // Comp. Immunol. Microbiol. Infect. Dis. – 2021. – Vol. 74:101574. doi: 10.1016/ j.cimid.2020.101574.
71. Kodama C., Lange B., Olaru I. et al. Mycobacterium tuberculosis transmission from patients with drug-resistant compared to drug-susceptible TB: a systematic review and meta-analysis // Eur. Respir. J. – 2017. – Vol. 26. – P. 50-54.
72. Li G., Zhang J., Guo Q., Jiang Y., Wei J., Zhao L-L. et al. Efflux pump gene expression in multidrug-resistant Mycobacterium tuberculosis clinical isolates // PLoS One. – 2015. – Vol. 10. – N. 2. – e0119013.
73. Li J., Gao X., Luo T., Wu J., Sun G., Liu Q. et al. Association of gyrA/B mutations and resistance levels to fluoroquinolones in clinical isolates of Mycobacterium tuberculosis. Emerging microbes and infections // Emerg. Microbes. Infect. – 2014. – Vol. 3. – N. 3. – e19.
74. Li X-Z., Nikaido H. Efflux-mediated drug resistance in bacteria // Drugs. – 2004. – Vol. 64. – N. 2. – P. 159-204.
75. Liu Y., Matsumoto M., Ishida H., Ohguro K., Yoshitake M., Gupta R. et al. Delamanid: From discovery to its use for pulmonary multidrug-resistant tuberculosis (MDR-TB) // Tuberculosis (Edinb). – 2018. – Vol. 111. – P. 20-30. doi: 10.1016/j.tube.2018.04.008.
76. Lopez B., de Oliveira R., Pinhata J., Chimara E., Ascencio E. et al. Bedaquiline and Linezolid MIC Distributions and Epidemiological Cut-Off Values for Mycobacterium Tuberculosis in the Latin American Region // J. Antimicrob. Chemother. – 2019. – Vol. 74. – N. 2. – P. 373-379. doi: 10.1093/jac/dky414.
77. Machado D., Perdigão J., Ramos J., Couto I., Portugal I., Ritter C. et al. High-level resistance to isoniazid and ethionamide in multidrug-resistant Mycobacterium tuberculosis of the Lisboa family is associated with inhA double mutations // J. Antimicrob. Chemother. – 2013. – Vol. 68. – P. 1728-1732.
78. Martin A., Morcillo N., Lemus D., Montoro E., Telles M., Simboli N. at. et. Multicenter study of MTT and resazurin assays for testing susceptibility to first-line anti-tuberculosis drugs // Int. J. Tuberc. Lung. Dis. – 2005. – Vol. 9. – N. 8. – P. 901-906.
79. Martin I., Dionne K., Deml S., Wengenack N. et al. Automated broth-based systems versus the MYCOTB plate for antimicrobial susceptibility testing of the Mycobacterium tuberculosis complex: challenges in interpretation // Diagn. Microbiol. Infect. Dis. – 2018. – Vol. 91. – N. 1. – P. 38-41. doi: 10.1016/j.diagmicrobio.2018.01.002.
80. Martin L., Coronel J., Faulx D., Valdez M., Metzler M., Crudder C. et al. A field evaluation of the Hardy TB MODS Kit™ for the rapid phenotypic diagnosis of tuberculosis and multi-drug resistant tuberculosis // PLoS One. – 2014. – Vol. 9. – N. 9: e107258. doi: 10.1371/j.
81. Mathys V., Wintjens R., Lefevre P. et al. Molecular genetics of paraaminosalicylic acid resistance in clinical isolates and spontaneousmutants of Mycobacterium tuberculosis // Antimicrob. Agents. Chemother. – 2009. – Vol. 53. – P. 2100-9.
82. Maus C., Plikaytis B., Shinnick T. Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis // Antimicrob. Agents. Chemother. – 2005. – Vol. 49. – N. 8. – P. 3192-3197.
83. McCallum A., Sloan D. The importance of clinical pharmacokinetic–pharmacodynamic studies in unraveling the determinants of early and late tuberculosis outcomes // Int. J. Pharmacokinet. – 2017. – Vol. 2. – N. 3. – P. 195-212.
84. Mesfin Y., Hailemariam D., Biadglign S. et al. Association between HIV/AIDS and multi-drug resistance tuberculosis: a systematic review and meta-analysis // PLoS One. – 2014. – Vol. 9. – e82235.
85. Miotto P., Zhang Y., Cirillo D., Yam W. Drug resistance mechanisms and drug susceptibility testing for tuberculosis. Invited Review Series: Tubercolosis updates 2018 // Respirology. – 2018. – Vol. 23. – N. 12. – P. 1098-1113.
86. Munir A., Vedithi S., Chaplin A., Blundell T. Genomics, computational biology and drug discovery for mycobacterial infections: fighting the emergence of resistance // Front. Genet. – 2020. – Vol. 11. – P. 965. doi: 10.3389/fgene.2020.00965.
87. Muthukrishnan L. Multidrug resistant tuberculosis - Diagnostic challenges and its conquering by nanotechnology approach – an overview // Chem. Biol. Interact. – 2021. – Vol. 26. – N. 337:109397. doi: 10.1016/j.cbi.2021.109397.
88. Nasiri M., Haeili M., Ghazi M., Goudarzi H., Pormohammad A., Fooladi A., Feizabadi M. New insights in to the intrinsic and acquired drug resistance mechanisms in mycobacteria // Front Microbiol. – 2017. – Vol. 8. – P. 681.
89. Nguyen T., Anthony R., Cao T., Bañuls A., Nguyen V., Vu D. et al. Delamanid Resistance: Update and Clinical Management // Clin. Infect. Dis. – 2020. – Vol. 71. – N. 12. – P. 3252-3259. doi: 10.1093/cid/ciaa755.
90. Nieto Ramirez L., Quintero Vargas K., Diaz G. Whole genome sequencing for the analysis of drug resistant strains of Mycobacterium tuberculosis: a systematic review for bedaquiline and delamanid // Antibiotics (Basel). – 2020. – Vol. 9. – N. 3. – P. 133. doi: 10.3390/antibiotics9030133.
91. Nosova E., Bukatina A., Isaeva Y., Makarova M., Galkina K., Moroz A. Analysis of mutations in the gyrA and gyrB genes and their association with the resistance of Mycobacterium tuberculosis to levofloxacin, moxifloxacin and gatifloxacin // J. Med. Microbiol. – 2013. – Vol. 62. – P. 108-113.
92. Palomino J., Martin A. Drug resistance mechanisms in Mycobacterium tuberculosis // Antibiotics (Basel). – 2014. – Vol. 3. – P. 317-340.
93. Pang Y., Zong Z., Huo F. et al. In vitro drug susceptibility of bedaquiline, delamanid, linezolid, clofazimine, moxifloxacin, and gatifloxacin against extensively drug-resistant tuberculosis in Beijing, China // Antimicrob. Agents. Chemother. – 2017. – Vol. 61. – N. 10. – pii: e00900-17.
94. Peretokina I., Krylova L., Antonova O., Kholina M., Kulagina E., Nosova E. et al. Reduced susceptibility and resistance to bedaquiline in clinical M. tuberculosis isolates // J. Infect. – 2020. – Vol. 80. – N. 5. – P. 527-535. doi: 10.1016/j.jinf. 2020.01.007.
95. Ramaswamy S., Amin A., Göksel S., Stager C., Dou S., El Sahly H. et al. Molecular genetic analysis of nucleotide polymorphisms associated with ethambutol resistance in human isolates of Mycobacterium tuberculosis // Antimicrob. Agents Chemother. – 2000. – Vol. 44. – P. 326-336.
96. Richter E., Rüsch-Gerdes S., Hillemann D. First Linezolid-Resistant Clinical Isolates of Mycobacterium tuberculosis // Antimicrob. Agents. Chemother. – 2007. – Vol. 51. – N. 4. – P. 1534-1536. doi: 10.1128/AAC.01113-06.
97. Rumende C. Risk Factors for Multidrug-resistant Tuberculosis // Acta. Med. Indones. – 2018. – Vol. 50. – N. 1. – P. 1-2.
98. Rüsch-Gerdes S., Pfyffer G., Casal M., Chadwick М., Siddiqi S. Multicenter laboratory validation of the BACTEC MGIT 960 technique for testing susceptibilities of Mycobacterium tuberculosis to classical second-line drugs and newer antimicrobials // J. Clin. Microbiol. – 2006. – Vol. 44. – N. 3. – P. 688-692. doi: 10.1128/JCM.44.3.688-692.2006.
99. Saxena S., Spaink H., Forn-Cuní G. Drug Resistance in Nontuberculous Mycobacteria: Mechanisms and Models // Biology (Basel). – 2021. – Vol. 10. – N. 2. – P. 96. doi: 10.3390/biology10020096.
100. Schön T., Miotto P., Köser C., Viveiros M., Boettger E., Cambau E. Mycobacterium tuberculosis drug resistance testing: challenges, recent developments and perspectives // Clin. Microbiol. Infect. – 2017. – Vol. 23. – N. 3. – P. 154-160.
101. Sharma P., Lalwani J., Pandey P., Thakur A. Factors Associated with the Development of Secondary Multidrug-resistant Tuberculosis // Int. J. Prev. Med. –2019. – Vol. 10. – P. 67. doi: 10.4103/ijpvm.IJPVM_298_17.
102. Singh R., Dwivedi S., Gaharwar U., Meena R., Rajamani P., Prasad T. Recent updates on drug resistance in Mycobacterium tuberculosis // J. Appl. Microbiol. – 2020. – Vol. 128. – N. 6. – P. 1547-1567. doi: 10.1111/jam.14478.
103. Ssengooba W., Nakayita G., Namaganda C., Joloba M. Agreement of Middle brook 7H10 with Lowenstein Jensen and accuracy of the Sensititre MYCOTB plate using either method as a reference standard for Mycobacterium tuberculosis first line drug susceptibility testing // PLoS One. – 2018. – Vol. 13. – N. 6: e0199638. doi: 10.1371/journal.pone.0199638.
104. Swain S., Sharma D., Hussain T., Pati S. Molecular mechanisms of underlying genetic factors and associated mutations for drug resistance in Mycobacterium tuberculosis // Emerg. Microbes. Infect. – 2020. – Vol. 9. – N. 1. – P. 1651-1663. doi: 10.1080/22221751.2020.1785334.
105. Tahlan K., Wilson R., Kastrinsky D. et al. SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis // Antimicrob. Agents. Chemother. – 2012. – Vol. 56. – N. 4. – P. 1797-1809. doi:10.1128/AAC.05708-11.
106. Tiberi S., Buchanan R., Caminero J., Centis R., Arbex M., Salazar M. et al. The challenge of the new tuberculosis drugs // Presse Med. – 2017. – Vol. 46(2 Pt 2):e41-e51. doi: 10.1016/j.lpm.2017.01.016.
107. Torrea G., Coeck N., Desmaretz C., Van De Parre T., Van Poucke T., Lounis N. et al. Bedaquiline susceptibility testing of Mycobacterium tuberculosis in an automated liquid culture system // J. Antimicrob. Chemother. – 2015. – Vol. 70. – N. 8. – P. 2300-2305. doi: 10.1093/jac/dkv117.
108. Torrea G., Ng K., Van Deun A., André E., Kaisergruber J. et al. A comparison of the Sensititre® MYCOTB panel and the agar proportion method for the susceptibility testing of Mycobacterium tuberculosis // Sci. Rep. – 2019. – Vol. 9. – N. 1: 11826. doi: 10.1038/s41598-019-48401-z.
109. Tortoli E., Benedetti M., Fontanelli A., Simonetti M. Evaluation of automated BACTEC MGIT 960 system for testing susceptibility of Mycobacterium tuberculosis to four major antituberculous drugs: comparison with the radiometric Bactec 460TB method and the agar plate method of proportion // J. Clin. Microbiol. – 2002. – Vol. 40. – N. 2. – P. 607-610. doi: 10.1128/jcm.40.2.607-610.2002.
110. Van Deun A., Aung K., Hossain A., de Rijk P., Gumusboga M., Rigouts L., de Jong B. Disputed rpoB mutations can frequently cause important rifampicin resistance among new tuberculosis patients // Int. J. Tuberc. Lung. Dis. – 2015. – Vol. 19. – N. 2. – P. 185-190.
111. Warrier T., Kapilashrami K., Argyrou A., Ioerger T., Little D., Murphy K. et al. N-methylation of a bactericidal compound as a resistance mechanism in Mycobacterium tuberculosis // P. Natl. Acad. Sci USA. – 2016. – Vol. 113. – N. 31. – E4523-30.
112. Wei J., Dahl J., Moulder J., Roberts E., O’Gaora P., Young D., Friedman R. Identification of a Mycobacterium tuberculosis gene that enhances mycobacterial survival in macrophages // J. Bacteriol. – 2000. – Vol. 182. – N. 2. – P. 377–384.
113. WHO. 2013. Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF assay for the: diagnosis of pulmonary and extrapulmonary TB in adults and children. Policy update. – WHO.: Geneva, Switzerland, 2013.
114. WHO. 2014. Сompanion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis. Chapter 3. Laboratory. – Geneva: WHO, 2014.− P. 39-60.
115. WHO. Global tuberculosis report 2015. – Geneva Google Scholar, 2016.
116. WHO. The use of molecular line probe assays for the detection of resistance to second-line antituberculosis drugs. Policy guidance. – Geneva, Switzerland:
117. WHO. Technical report on critical concentrations for drug susceptibility testing of medicines used in the treatment of drug-resistant tuberculosis. WHO/CDS/TB/2018a.5. – Geneva, 2018.
118. WHO. Technical manual for drug susceptibility testing of medicines used in the treatment of tuberculosis. – World Health Organization. 2018b; WHO/CDS/TB/2018.24.
119. Wilby K., Hussain F., A Review of clinical pharmacokinetic and pharmacodynamic relationships and clinical implications for drugs used to treat multi-drug resistant tuberculosis // Eur. J. Drug. Metab. Pharmacokinet. – 2020. – Vol. 45. – P. 305-313. https://doi.org/10.1007/s13318-019-00604-5.
120. Zhang Y., Yew W.-W. Mechanisms of drug resistance in Mycobacterium tuberculosis: update 2015 // Int. J. Tuberc. Lung. Dis. – 2015. – Vol. 19. – N. 11. – P. 1276-1289.
121. Zhang Z., Pang Y., Wang Y., Liu C., Zhao Y. Beijing genotype of Mycobacterium tuberculosis is significantly associated with linezolid resistance in multidrug-resistant and extensively drug-resistant tuberculosis in China // Int. J. Antimicrob. Agents. – 2014. – Vol. 43. – N. 3. – P. 231-235. 2013.12.007.
122. Zignol M., Dara M., Dean A. et al. Drug-resistant tuberculosis in the WHO European Region: an analysis of surveillance data // Drug. Resist. Updat. – 2013. – Vol. 16. – N. 6. – P. 108-115.
123. Zimenkov D., Nosova E., Kulagina E., Antonova O., Arslanbaeva L., Isakova A. et al. Examination of bedaquiline- and linezolid-resistant Mycobacterium tuberculosis isolates from the Moscow region // J. Antimicrob. Chemother. – 2017. – Vol. 72. – N. 7. – P. 1901-1906. doi: 10.1093/jac/dkx094.
124. Zürcher K., Ballif M., Fenner L. et al. Drug susceptibility testing and mortality in patients treated for tuberculosis in high-burden countries: a multicenter cohort study. International epidemiology Databases to Evaluate AIDS (IeDEA) consortium // Lancet Infect. Dis. – 2019. – Vol. 19. – N. 3. – P. 298-307.
Review
For citations:
Litvinov V.I., Nosova E.Yu. Problems of drug resistance of M. tuberculosis. Tuberculosis and socially significant diseases. 2021;9(2):70-82. (In Russ.) https://doi.org/10.54921/2413-0346-2021-12-2-70-82