SIMULTANEIUS DETECTION OF GENETIC DETERMINANTS OF EXTENSIVELY DRUG RESISTANCE AND GENOTYPING OF M. TUBERCULOSIS BY HYBRIDIZATION ON BIOCHIPS
Abstract
We carried out a retrospective study of 150 MTB isolates to detect drug resistance genetic determinants by “TB–TEST” system and estimate their correlation with the results of the microbiological drug susceptibility testing in BACTEC MGIT 960 and Sensititre MycoTB Plate.
It was found that the substitution S531L in rpoB gene detected in MDR, XDR and monoresistant MTB isolates most frequently among all the spectrum of mutations leading to MTB resistance to high concentration of rifampicin. On the contrary, MTB with the D516Y, H526L and H526N substitutions in rpoB gene were intermediately or low-resistant and were detected as susceptible to rifampicin by standard microbiological methods. The substitution S315T in katG leading to MTB resistance to high concentration of isoniazid was detected in MDR, XDR and monoresistant MTB isolates most frequently.
In most cases high and moderate level of resistance of MTB to fluoroquinolones connected with mutations in gyrA or both in gyrA and gyrB genes and intermediate and low resistance connected with mutations only in gyrB. Detection of mutations in eis gene (low resistance to KAN) increases a correlation with phenotypic DST in Bactec MGIT 960 up to 93.2%. In Moscow region as well as in other regions of the Russian Federation Beijing genotype of MTB prevailed and were detected in 78.0% of cases. 20.0% of Beijing strains had BO/W148 genotype associated with high level of resistance of MTB to antituberculosis drugs.
About the Authors
E. Yu. NosovaRussian Federation
A. A. Khаkhаlinа
Russian Federation
K. Yu. Gаlkinа
Russian Federation
M. A. Krаsnоvа
Russian Federation
L. Yu. Krilоvа
Russian Federation
M. V. Маkаrоvа
Russian Federation
S. G. Sаfоnоvа
Russian Federation
References
1. Макарова М.В., Сафонова С.Г., Исаева Ю.Д., Крылова Л.Ю., Носова Е.Ю., Литвинов В.И. Определение критической концентрации химиопрепаратов для оценки лекарственной чувствительности Mycobacterium tuberculosis с помощью тест-системы Sensititre MycoTB. //
2. Журнал микробиологии, эпидемиологии и иммунологии. – 2015. – № 3. – С. 63-67.
3. Abuali M., Katariwala R., LaBombardi V. A comparison of the Sensititre MYCOTB panel and the agar proportion method for the susceptibility testing of Mycobacterium tuberculosis. // Eur. J. Clin. Microbiol. Infect. Dis. – 2012. – Vol. 31. – N. 5. – P. 835-839.
4. An D., Duyen N., Lan N. et al. Beijing genotype of Mycobacterium tuberculosis is significantly associated with high-level fluoroquinolone resistance in Vietnam. // Antimicrob. Agents Chemother. – 2009. – Vol. 53. – N. 11. – P. 4835-4839.
5. BakuBa Z., Napiórkowska A., Bielecki J. et al. Mutations in the embB gene and their association with ethambutol resistance in multidrug-resistant Mycobacterium tuberculosis clinical isolates from Poland. // BioMed. Res. Intern. – 2013. – Vol. 167954. – P. 5.
6. Bauskenieks M., Pole I., Skenders G. et al. Genotypic and phenotypic characteristics of aminoglycoside-resistant Mycobacterium tuberculosis isolates in Latvia // Diagn. Microbiol. Infect. Dis. – 2015. – Vol. 81.– P. 177-182.
7. Centers for Disease Control and Prevention (CDC). Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs-worldwide, 2000–2004. // MMWR. – 2006.– Vol. 55.– P. 301-305.
8. Chakravorty S., Lee J., Cho E. et al. Genotypic susceptibility testing of Mycobacterium tuberculosis isolates for amikacin and kanamycin resistance by use of a rapid sloppy molecular beacon-based assay identifies more cases of low-level drug resistance than phenotypic lowenstein-jensen testing. // J. Clin. Microbiol. – 2015. – Vol. 53. – N. 1. – P. 41-53.
9. Drobniewski F., Balabanova Y., Nikolayevsky V. et al. Drug-resistant tuberculosis, clinical virulence, and the dominance of the Beijing strain family in Russia.
10. // JAMA. – 2005. – Vol. 293. – N. 22. – P. 2726-2731.
11. Du Q., Dai G., Long Q. et al. Mycobacterium tuberculosis rrs A1401G mutation correlates with high-level resistance to kanamycin, amikacin, and capreomycin in clinical isolates from mainland China. // Diagn. Microbiol. Infect. Dis. – 2013. – Vol. 77. – P. 138-142.
12. Georghiou S., Magana M., Garfein R. et al. Evaluation of genetic mutations associated with Mycobacterium tuberculosis resistance to amikacin, kanamycin and capreomycin: a systematic review. // PloS One. – 2012. – Vol. 7. – e33275.
13. Gikalo M., Nosova E., Krylova L., Moroz A. The role of eis mutations in the development of kanamycin resistance in Mycobacterium tuberculosis isolates from the Moscow region. // J. Antimicrob. Chemother. – 2012. – Vol. 67. – N. 9. – P. 2107-2109.
14. Groll A., Martin A., Jureen P. et al. Fluoroquinolone resistance in Mycobacterium tuberculosis and mutations in gyrA and gyrB. // Antimicrob. Agents. Chemother. – 2009. – Vol. 53. – N. 10. – P. 4498-4500.
15. Hall L., Jude K., Clark S. et al. Evaluation of the Sensititre MycoTB plate for susceptibility testing of the Mycobacterium tuberculosis complex against first- and second-line agents. // J. Clin. Microbiol. – 2012. – Vol. 50. – N. 11. – P. 3732-3734.
16. Haydel S. Extensively drug-resistant tuberculosis: a sign of the times and an impetus for antimicrobial discovery.// Pharmaceuticals (Basel). – 2010. – Vol. 3. – N. 7. – P. 2268-2290.
17. Hillemann D., Kubica T., Rüsch-Gerdes S. et al. Disequilibrium in distribution of resistance mutations among Mycobacterium tuberculosis Beijing and non-Beijing strains isolated from patients in Germany. // Antimicrob Agents Chemother. – 2005. – Vol. 49. – N. 3. – P. 1229-1231.
18. Homolka S., Projahn M., Feuerriegel S. et al. High resolution discrimination of clinical Mycobacterium tuberculosis complex strains based on single nucleotide polymorphisms. // PLoS ONE. – 2012. – Vol. 7. – N. 7. – e39855.
19. Kam K., Yip C., Cheung T. et al. Stepwise decrease in Moxifloxacin susceptibility amongst clinical isolates of multidrug-resistant Mycobacterium tuberculosis: correlation with Ofloxacin susceptibility. // Microb. Drug Resist. – 2006. – Vol. 12. – N. 1. – P. 7-11.
20. Kambli P., Ajbani K., Sadani M. et al. Defining multidrug-resistant tuberculosis: correlating GenoType MTBDRplus assay results with minimum inhibitory concentrations. // Diagn. Microbiol. Infect. Dis. – 2015. – doi: 10.1016/j. diagmicrobio.
21. Larsen M., Vilche`ze C., Kremer L. et al. Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis. // Mol. Microbiol. J. – 2002. – Vol. 46. – P. 453-466.
22. Li J., Gao X., Luo T. et al. Association of gyrA/B mutations and resistance levels to fluoroquinolones in clinical isolates of Mycobacterium tuberculosis. // Emerging. Microbes. Infect. – 2014. – Vol. 3. – e19.
23. Malik S., Willby M., Sikes D. et al. New insights into fluoroquinolone resistance in Mycobacterium tuberculosis: functional genetic analysis of gyrA and gyrB mutations. // PLoS One. – 2012. – Vol. 7. – N. 6. – P. 1-10.
24. Mokrousov I. Insights into the origin, emergence, and current spread of a successful Russian clone of Mycobacterium tuberculosis. // Clin. Microbiol. – 2013. – Vol. 26. – P. 342-360.
25. Mokrousov I. The quiet and controversial: Ural family of Mycobacterium tuberculosis. // Infection. Genetics Evolution. – 2012. – Vol. 12. – P. 619-629.
26. Mokrousov I., Limeschenko E., Steklova L. High prevalence of katG Ser315Thr substitution among isoniazid-resistant Mycobacterium tuberculosis clinical isolates from Northwestern Russia, 1996 to 2001. // Antimicrobial Agents Chemotherapy. – 2002. – Vol. 46. – N. 5. – P. 1417-1424.
27. Mpagama S., Houpt E., Stroup S. et al. Application of quantitative second-line drug susceptibility testing at a multidrug-resistant tuberculosis hospital in Tanzania. // BMC Infectious Dis. – 2013. – Vol. 13. – P. 432.
28. Nosova E., Bukatina A., Isaeva Y. et al. Analysis of mutations in the gyrA and gyrB genes and their association with the resistance of Mycobacterium tuberculosis to levofloxacin, moxifloxacin and gatifloxacin. // J. Med. Microbiol. – 2013. – Vol. 62. – P. 108-113.
29. Park Y., Ryoo S., Lee S. et al. Correlation of the phenotypic ethambutol susceptibility of Mycobacterium tuberculosis with embB gene mutations in Korea. // J. Med. Microbiol. – 2012. – Vol. 61. – N. 4. – P. 529-534.
30. Plinke C., Rüsch-Gerdes S., Niemann S. Significance of mutations in embB Codon 306 for prediction of ethambutol resistance in clinical Mycobacterium tuberculosis isolates. // Antimicrobial Agents and Chemotherapy. – 2006. – Vol. 50. – N. 5. – P. 1900-1902.
31. Reeves A., Campbell P., Sultana R. et al. Aminoglycoside cross-resistance in Mycobacterium tuberculosis due to mutations in the 5=Untranslated region of whiB7. // AAC. – 2013. – Vol. 57. – N. 4. – P. 1857-1865.
32. Rigouts L., Gumusboga M., Bram de Rijk W. et al. Rifampin resistance missed in automated liquid culture system for Mycobacterium tuberculosis isolates with specific rpoB Mutations. // J. Clin. Microbiol. – 2013. – Vol. 51. – N. 8. – P. 2641-2645.
33. Shitikov E., Bespyatykh J., Ischenko D. et al. Unusual large-scale chromosomal rearrangements in Mycobacterium tuberculosis Beijing B0/W148 cluster isolates. // Plos ONE. – 2014. – Vol. 9. – N. 1. – e84971.
34. Springer B., Lucke K., Calligaris-Maibach R. et al. Quantitative drug susceptibility testing of Mycobacterium tuberculosis by use of MGIT 960 and EpiCenter instrumentation. // J. Clin. Microbiol. – 2009. – Vol. 47. – N. 6. – P. 1773-1780.
35. Springer B., Calligaris-Maibach R., Ritter C., Böttger E. Tuberculosis drug resistance in an area of low endemicity in 2004 to 2006: semiquantitative drug susceptibility testing and genotyping. // J. Clin. Microbiol. – 2008. – Vol. 46. N. 12. – P. 4064-4067.
36. Supply P., Allix C. et al. Proposal for standardization of optimized mycobacterial interspersed repetitive unit–variable-number tandem repeat typing of Mycobacterium tuberculosis. // J. Clin. Microbiol. – 2006. – Vol. 44. – N. 12. – P. 4498-4510.
37. Trauner A., Borrell S., Reither K. et al. Evolution of drug resistance in tuberculosis: recent progress and implications for diagnosis and therapy. // Drugs. – 2014. – Vol. 74. – P. 1063-1072.
38. van Deun A., Barrera L., Bastian I. et al. Mycobacterium tuberculosis strains with highly discordant rifampin susceptibility test results. // J. Clin. Microbiol. – 2009. – Vol. 47. – N. 11. – P. 3501-3506.
39. van Ingen J., Aarnoutse R., de Vries G. et al. Low-level rifampicin-resistantMycobacterium tuberculosis strains raise a new therapeutic challenge. // Intern. J. Tub. Lung. Dis. – 2011. – Vol. 15. – N. 7. – P. 990-992.
40. World Health Organization. Global Tuberculosis Control-Epidemiology, Strategy, Financing. – World Health Organization: Geneva, Switzerland. – 2009.
41. Zaunbrecher M., Sikes J., Metchock B. et al. Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. // Proc. Natl. Acad. Sci USA. – 2009. – Vol. 106. – P. 20004-20009.
42. Zhang. Z., Liu M., Wang Y. et al. Molecular and phenotypic characterization of multidrug-resistant Mycobacterium tuberculosis isolates resistant to kanamycin, amikacin, and capreomycin in China. // Eur. J. Clin. Microbiol. Infect. Dis. – 2014. – Vol. 33. – N. 11. – P. 1959-1966.
43. Zhang Z., Wang Y., Pang Yu. et al. ethambutol resistance as determined by broth dilution method correlates better than sequencing results with embb mutations in multidrug-resistant Mycobacterium tuberculosis isolates// JCM. – 2014. – Vol. 52. – N. 2. – P. 638-641.
Review
For citations:
Nosova E.Yu., Khаkhаlinа A.A., Gаlkinа K.Yu., Krаsnоvа M.A., Krilоvа L.Yu., Маkаrоvа M.V., Sаfоnоvа S.G. SIMULTANEIUS DETECTION OF GENETIC DETERMINANTS OF EXTENSIVELY DRUG RESISTANCE AND GENOTYPING OF M. TUBERCULOSIS BY HYBRIDIZATION ON BIOCHIPS. Tuberculosis and socially significant diseases. 2016;(2):24-32. (In Russ.)