Molecular tests for hybridization analysis in the diagnosis of drug susceptibility of M. Tuberculosis to fluoroquinolones and injectable drugs
https://doi.org/10.54921/2413-0346-2023-11-4-30-38
Abstract
The paper presents data on testing the drug susceptibility of clinical isolates of M. tuberculosis (MTB) to fluoroquinolones and injectable drugs using molecular genetic tests and phenotypic methods. We demonstrated the diagnostic capabilities of the hybridization technologies «TB-TEST and GenoType MTBDRsl v.2 to detect the genetic determinants of resistance in MTB isolates with multidrug and extensively drug resistance (MDR, XDR), as well as in MBT with pre-XDR.
About the Authors
A. I. IsakovaRussian Federation
Moscow
Yu. D. Mikhailova
Russian Federation
Moscow
M. A. Sviridenko
Russian Federation
Moscow
A. A. Khakhalina
Russian Federation
Moscow
K. Yu. Galkina
Russian Federation
Moscow
E. Yu. Nosova
Russian Federation
Moscow
S. G. Safonova
Russian Federation
Moscow
References
1. Мирзабеков А.Д. Биочипы в биологии и медицине XXΙ века // Вестник РАН. – 2003. – Т. 73. – № 5. – С. 412.
2. Приказ № 951 Минздрава России от 29 декабря 2014 г. «Об утверждении методических рекомендаций по совершенствованию диагностики и лечения органов дыхания». – М., 2014. – 41 с.
3. Руководство по интерпретации и отчетности для лабораторного персонала и врачей. Тесты молекулярной гибридизации с типоспецифическими зондами для выявления лекарственно-устойчивого туберкулеза // www.stoptb.org/wg/gli
4. Ajileye A., Alvarez N., Merker M et al. Some synonymous and nonsynonymous gyrA mutations in Mycobacterium tuberculosis lead to systematic falsepositive fluoroquinolone resistance results with the Hain GenoType MTBDRsl Assays // Antimicrob. Agents Chemother. – 2017. – Vol. 61, № 4. – e02169-16.
5. Aubry A., Veziris N., Cambau E. et al. Novel gyrAse mutations in quinolone-resistant and-hypersusceptible clinical isolates of Mycobacterium tuberculosis: functional analysis of mutant enzymes // Antimicrob. Agents Chemother. – 2006. – Vol. 50. – P. 104-112.
6. Brossier F., Guindo D., Pham A. et al. Performance of the new version (v. 2.0) of the GenoType MTBDRsl test for detection of resistance to second-line drugs in multidrug-resistant Mycobacterium tuberculosis complex strains // J. Clin. Microbiol. – 2016. – Vol. 54. – P. 1573-1580.
7. Chakravorty S., Lee J.S., Cho E.J/ et al. Genotypic susceptibility testing of Mycobacterium tuberculosis isolates for amikacin and kanamycin resistance by use of a rapid sloppy molecular beacon-based assay identifies more cases of low-level drug resistance than phenotypic Lowenstein-Jensen testing // J. Clin. Microbiol. – 2015. – Vol. 53, № 1. – Р. 43-51.
8. Coeck N., Jong B.C., Diels M. et al. Correlation of different phenotypic drug susceptibility testing methods for four fluoroquinolones in Mycobacterium tuberculosis // J. Antimicrob. Chemother. – 2016. – Vol. 71, № 5. – P. 1233-1240.
9. Gardee Y., Dreyer A.W., Koornhof H.J. et al. Evaluation of the GenoType MTBDRsl version 2.0 Assay for second-line drug resistance detection of Mycobacterium tuberculosis isolates in South Africa / J. Clin. Microbiol. – 2017. – Vol. 55. – P. 791-800.
10. Georghiou S.B., Magana M., Garfein R.S. et al. Evaluation of genetic mutations associated with Mycobacterium tuberculosis resistance to amikacin, kanamycin and capreomycin: a systematic review // PLoS One. – 2012. – Vol. 7, № 3. – e33275.
11. Hillemann D., Rüsch-Gerdes S., Richter E. Feasibility of the Geno Type® MTBDRsl Assay for fluoroquinolone, amikacin/capreomycin, and ethambutol resistance testing of Mycobacterium tuberculosis strains and in clinical specimens // J. Clin. Microbiol. – 2009. – Vol. 47. – P. 1767-1772.
12. Kambli P., Ajbani K., Nikam C. et al. Correlating rrs and eis promoter mutations in clinical isolates of Mycobacterium tuberculosis with phenotypic susceptibility levels to the second-line injectables // Int. J. Mycobacteriol. – 2016. – Vol. 5, № 1. – P. 1-6.
13. Lasunskaia E., Ribeiro S.C., Manicheva O. et al. Emerging multidrug resistant Mycobacterium tuberculosis strains of the Beijing genotype circulating in Russia express a pattern of biological properties associated with enhanced virulence // Microbes Infect. – 2010. – Vol. 12, № 6. – P. 467-475.
14. Ling D.I., Zwerling A.A., Pai M. Rapid diagnosis of drug-resistant TB using line probe assays: from evidence to policy // Expert Rev. Respir. Med. – 2008. – Vol. 2. – P. 583-588. Magnet S., Blanchard J.S. Molecular insights into aminoglycoside action and resistance // Chem. Rev. – 2005. – Vol. 105, № 2. – P. 477-498.
15. Malik S., Willby M., Sikes D. et al. New insights into fluoroquinolone resistance in Mycobacterium tuberculosis: functional genetic analysis of gyrA and gyrB mutations // PLoS One. – 2012. – Vol. 7, № 6. – e39754.
16. Maus C.E., Plikaytis B.B., Shinnick T.M. Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis // Antimicrob. Agents Chemother. – 2005. – Vol. 49, № 8. – P. 3192-3197.
17. Miotto P., Tessema B., Tagliani E. et al. A standardised method for interpreting the association between mutations and phenotypic drug resistance in Mycobacterium tuberculosis // Eur. Respir. J. – 2017. – Vol. 50, № 6. – 1701354.
18. Narvskaya O., Otten T., Limeschenko E. et al. Nosocomial outbreak of multidrug-resistant tuberculosis caused by a strain of Mycobacterium tuberculosis W-Beijing family in St. Petersburg, Russia // Eur. J. Clin. Microbiol. Infect. Dis. – 2002. – Vol. 21, № 8. – P. 596-602.
19. Reeves A.Z., Campbell P.J., Sultana R. et al. Aminoglycoside cross-resistance in Mycobacterium tuberculosis due to mutations in the 5‘ untranslated region of whiB7 //Antimicrob. Agents Chemother. – 2013. – Vol. 57, № 4. – P. 1857-1865.
20. Schön T., Miotto P., Köser C.U. et al. Mycobacterium tuberculosis drug resistance testing: challenges, recent developments and perspectives // Clin. Microbiol. Infect. – 2017. – Vol. 23, № 3. – P. 154-160.
21. Siddiqi S. H., Rusch-Gerdes S., Alexander H. et al. MGIT Procedure Manual for BACTECТМMGITТМ960 TB System (Also applicable for Manual MGIT) – 2006. [Электронный ресурс] https://www.finddx.org/wp-content/uploads/2016/02/mgit_manual_nov2006.pdf (Дата обращения 20.09.2022).
22. Takiff H., Salazar L., Guerrero C. et al. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations // Antimicrob. Agents Chemother. – 1994. – Vol. 38, № 4. – P. 773-780.
23. Wang J.-Y., Lee L.-N., Lai H.-C. et al. Fluoroquinolone resistance in Mycobacterium tuberculosis isolates: associated genetic mutations and relationship to antimicrobial exposure // J. Antimicrob. Chemother. – 2007. – Vol. 59, № 5. – P. 860-865.
24. World Health Organization. The use of molecular line probe assays for the detection of resistance to second-line antituberculosis drugs. Policy guidance. – WHO.: Geneva, Switzerland, 2016. – 52 p.
25. World Health Organization. Policy guidance on drug-susceptibility testing (DST) of second-line antituberculosis drugs [Электронный ресурс]. – 2008. – Режим доступа: https://apps.who.int/iris/bitstream/handle/10665/70500/WHO_HTM_TB_2008.392_eng.pdf?sequence=1
26. Zaunbrecher M.A., Sikes Jr. R.D., Metchock B. et al. Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis // Proc. Natl. Acad. Sci. USA. – 2009. – Vol. 106, № 47. – P. 20004-20009.
27. Zhang Z., Liu M., Wang Y. et al. Molecular and phenotypic characterization of multidrug-resistant Mycobacterium tuberculosis isolates resistant to kanamycin, amikacin, and capreomycin in China // Eur. J. Clin. Microbiol. Infect. Dis. – 2014. – Vol. 33, № 11. – P. 1959-1966.
28. Zimenkov D.V., Kulagina E.V., Antonova O.V. et al. Simultaneous drug resistance detection and genotyping of Mycobacterium tuberculosis using a low-density hydrogel microarray // J. Antimicrob. Chemother. – 2016. – Vol. 71, № 6. – P. 1520-1531.
Review
For citations:
Isakova A.I., Mikhailova Yu.D., Sviridenko M.A., Khakhalina A.A., Galkina K.Yu., Nosova E.Yu., Safonova S.G. Molecular tests for hybridization analysis in the diagnosis of drug susceptibility of M. Tuberculosis to fluoroquinolones and injectable drugs. Tuberculosis and socially significant diseases. 2023;11(4):30-38. (In Russ.) https://doi.org/10.54921/2413-0346-2023-11-4-30-38