Preview

Tuberculosis and socially significant diseases

Advanced search

Activity of bedaquiline against mycobacteria (review)

https://doi.org/10.54921/2413-0346-2024-12-3-59-69

Abstract

Resistance of M. tuberculosis to anti-tuberculosis drugs (ATDs) and then to antibacterial drugs initially developed for other purposes, but effective against M. tuberculosis is an extremely serious problem. Treatment of drug-resistant tuberculosis is difficult, it is significantly more expensive, and its effectiveness is lower than in the treatment of drug-sensitive tuberculosis. With the advent of new anti-TB drugs such as bedaquiline and delamanid, the efficacy of etiotropic chemotherapy for MDR- and XDR-TB has increased significantly.

The review shows that bedaquiline has high activity in vitro against both M. tuberculosis and non-tuberculous mycobacteria. However, strains with natural resistance to this drug have been found in some cases. There are also data on the development of acquired resistance to bedaquiline. This indicates the need for rational (according to indications and in accordance with the developed optimal dosages and regimens) use of bedaquiline in the treatment of tuberculosis and mycobacterioses.

About the Authors

I. V. Litvinov
Moscow Research and Clinical Center for Tuberculosis Control of the Moscow Government Department of Health
Russian Federation

Moscow



S. G. Safonova
Moscow Research and Clinical Center for Tuberculosis Control of the Moscow Government Department of Health
Russian Federation

Moscow



I. V. Peretokina
Moscow Research and Clinical Center for Tuberculosis Control of the Moscow Government Department of Health
Russian Federation

Moscow



M. V. Litvinov
Moscow Research and Clinical Center for Tuberculosis Control of the Moscow Government Department of Health
Russian Federation

Moscow



References

1. Богородская Е.М., Кудлай Д.А., Литвинов В.И. Проблемы лекарственной устойчивости микобактерий. – М.: МНПЦБТ, 2021. – 504c.

2. Борисов С.Е., Иванушкина Т.Н., Иванова Д.А. и др. Эффективность и безопасность включающих бедаквилин шестимесячных режимов химиотерапии у больных туберкулезом органов дыхания // Туберкулез и социально значимые заболевания. – 2015. – № 3. – С. 30-49. 3. Васильева И.А., Самойлова А.Г., Ловачева О.В. и др. Влияние разных противотуберкулезных и антибактериальных препаратов на эффективность лечения больных туберкулезом с множественной лекарственной устойчивостью // Туберкулез и болезни легких. – 2017.–

3. Т. 95. – № 10. – С. 9-16.

4. Макарова М.В., Михайлова Ю.Д., Свириденко М.А. и др. Изучение активности бедаквилина in vitro в отношении Mycobacterium fortuitum complex // Туберкулез и социально значимые заболевания. – 2024. – Т. 12. – № 1. – С. 30-35.

5. Макарова М.В., Михайлова Ю.Д., Хачатурьянц Е.Н., Литвинов В.И. Изучение лекарственной чувствительности к бедаквилину быстрорастущих микобактерий комплекса M. chelonae – M. abscessus // Туберкулез и социально значимые заболевания. – 2022. – Т. 10. – № 4. – С. 42-49.

6. Макарова М.В., Михайлова Ю.Д., Хачатурьянц Е.Н., Литвинов В.И. Лекарственная чувствительность к бедаквилину штаммов M. kansasii, выделенных в противотуберкулезных учреждениях Москвы // Эпидемиология и вакцинопрофилактика. – 2023. – Т. 22. – № 3. – С. 64-69.

7. Перетокина И.В., Крылова Л.Ю., Михайлова Ю.Д. и др. Определение минимальных ингибирующих концентраций бедаквилина для оценки лекарственной чувствительности микобактерий туберкулеза // Туберкулез и болезни легких. – 2019. – Т. 97. – № 6. – С. 64-65.

8. Перетокина И.В., Крылова Л.Ю., Сафонова С.Г. др. Определение пограничного значения минимальной ингибирующей концентрации бедаквилина в отношении чувствительных клинических штаммов Mycobacterium tuberculosis на разных питательных средах // Туберкулез и социально значимые заболевания. – 2018. – № 3. – С. 32-35.

9. Abate G., Stapleton J., Rouphael N. et al. Variability in the management of adults with pulmonary nontuberculous mycobacterial disease // Clin. Infect. Dis. – 2021. – Vol. 72, № 7. – P. 1127-1137. doi: 10.1093/cid/ciaa252.

10. Aguilar-Ayala D., Cnockaert M., André E. et al. In vitro activity of bedaquiline against rapidly growing nontuberculous mycobacteria // J. Med. Microbiol. – 2017. – Vol. 66. – P. 1140-1143. 10.1099/jmm.0.000537.

11. Asami T., Aono A., Chikamatsu K. et al. Efficacy estimation of a combination of triple antimicrobial agents against clinical isolates of Mycobacterium abscessus subsp. abscessus in vitro // JAC Antimicrob. Resist. – 2021. – Vol. 3, № 1. – dlab004. doi: 10.1093/jacamr/dlab004.

12. Brown-Elliott B., Philley J., Griffith D. et al. In vitro susceptibility testing of bedaquiline against Mycobacterium avium complex // Antimicrob. Agents Chemother. – 2017. – Vol. 61. – e01798-16. 10.1128/AAC.01798-16.

13. Brown-Elliott B., Wallace R. In vitro susceptibility testing of bedaquiline against Mycobacterium abscessus complex // Antimicrob. Agents Chemother. – 2019. – Vol. 63, № 2. – e01919-18. doi: 10.1128/AAC.01919-18.

14. Chew K.L., Octavia S., Go J. et al. In vitro susceptibility of Mycobacterium abscessus complex and feasibility of standardizing treatment regimens // J. Antimicrob. Chemother. – 2021. – Vol. 76, № 4. – P. 973-978. doi: 10.1093/jac/dkaa520.

15. Daley C.L., Iaccarino J.M., Lange C. et al. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline // Clin. Infect. Dis. – 2020. – Vol. 71, № 4. – P. 905-913. doi: 10.1093/cid/ciaa1125.

16. Dupont C., Viljoen A., Thomas S. et al. Bedaquiline inhibits the ATP synthase in Mycobacterium abscessus and is effective in infected zebrafish // Antimicrob. Agents Chemother. – 2017. – Vol. 61, № 11. – e01225-17. doi: 10.1128/AAC.01225-17.

17. Gao T., Yao C., Shang Y. et al. Antimicrobial effect of oxazolidinones and its synergistic effect with bedaquiline against Mycobacterium abscessus complex // Infect. Drug Resist. – 2023. – Vol. 16. – P. 279-287. doi: 10.2147/IDR.S395750.

18. Guo Y., Yang J., Wang W. et al. Bedaquiline, delamanid, linezolid, clofazimine and capreomycin MIC distributions for drug resistance Mycobacterium tuberculosis in Shanghai, China // Infect. Drug Resist. – 2023. – Vol. 16. – P. 7587-7595. doi: 10.2147/IDR.S440711. PMID: 38107433; PMCID: PMC10723587.

19. Huitric E., Verhasselt P., Koul A. et al. Rates and mechanisms of resistance development in Mycobacterium tuberculosis to a novel diarylquinoline ATP synthase inhibitor // Antimicrob. Agents Chemother. – 2010. – Vol. 54, № 3. – P. 1022-1028. doi: 10.1128/AAC.01611-09.

20. Ismail N., Rivière E., Limberis J. et al. Genetic variants and their association with phenotypic resistance to bedaquiline in Mycobacterium tuberculosis: a systematic review and individual isolate data analysis // Lancet Microbe. – 2021. – Vol. 2, № 11. – e604-e616. doi: 10.1016/s2666-5247(21)00175-0.

21. Kaniga K., Hasan R., Jou R. et al. Bedaquiline drug resistance emergence assessment in multidrug-resistant tuberculosis (MDR-TB): a 5-year prospective in vitro surveillance study of bedaquiline and other second-line drug susceptibility testing in MDR-TB isolates // J. Clin. Microbiol. – 2022. – Vol. 60, № 1. – e0291920. doi: 10.1128/JCM.02919-20.

22. Kim D.H., Jhun B.W., Moon S.M. et al. In vitro activity of bedaquiline and delamanid against nontuberculous mycobacteria, including macrolide-resistant clinical isolates // Antimicrob. Agents Chemother. – 2019. – Vol. 63, № 8. – e00665-19. doi: 10.1128/AAC.00665-19.

23. Li B., Ye M., Guo Q. et al. Determination of MIC Distribution and mechanisms of decreased susceptibility to bedaquiline among clinical isolates of Mycobacterium abscessus // Antimicrob. Agents Chemother. – 2018. – Vol. 62, № 7. – e00175-18. doi: 10.1128/AAC.00175-18.

24. Lin S., Hua W., Wang S. et al. In vitro assessment of 17 antimicrobial agents against clinical Mycobacterium avium complex isolates // BMC Microbiol. – 2022. – Vol. 22, № 1. – P. 175. doi: 10.1186/s12866-022-02582-2. PMID: 35804298; PMCID: PMC9264595.

25. Litvinov V., Makarova M., Kudlay D. et al. In vitro activity of bedaquiline against Mycobacterium avium complex // J. Med. Microbiol. – 2021. – Vol. 70, № 10. doi: 10.1099/jmm.0.001439.

26. Martin A., Godino I.T., Aguilar-Ayala D.A. et al. In vitro activity of bedaquiline against slow-growing nontuberculous mycobacteria // J. Med. Microbiol. – 2019. – Vol. 68, № 8. – P. 1137-1139. doi: 10.1099/jmm.0.001025.

27. Omar S., Whitfield M.G., Nolan M.B. et al. Bedaquiline for treatment of non-tuberculous mycobacteria (NTM): a systematic review and meta-analysis // J. Antimicrob. Chemother. – 2024. – Vol. 79, № 2. – P. 211-240. doi: 10.1093/jac/dkad372.

28. Pang Y., Zheng H., Tan Y. et al. In vitro activity of bedaquiline against nontuberculous mycobacteria in China // Antimicrob. Agents Chemother. – 2017. – Vol. 61, № 5. – e02627-16. doi: 10.1128/AAC.02627-16.

29. Schulthess B., Akdoğan Kittana F.N., Hömke R., Sander P. In vitro bedaquiline and clofazimine susceptibility testing in Mycobacterium abscessus // Antimicrob. Agents Chemother. – 2022. – Vol. 66, № 5. – e0234621. doi: 10.1128/aac.02346-21.

30. Soni I., De Groote M.A., Dasgupta A., Chopra S. Challenges facing the drug discovery pipeline for non-tuberculous mycobacteria // J. Med. Microbiol. – 2016. – Vol. 65, № 1. P. 1-8. doi: 10.1099/ jmm.0.000198.

31. Sorayah R., Manimekalai M.S.S., Shin S.J. et al. Naturally-occurring polymorphisms in QcrB are responsible for resistance to telacebec in Mycobacterium abscessus // ACS Infect. Dis. – 2019. – Vol. 5, № 12. – P. 2055-2060. doi: 10.1021/acsinfecdis.9b00322.

32. Vesenbeckh S., Schönfeld N., Krieger D. et al. Bedaquiline as a potential agent in the treatment of M. intracellulare and M. avium infections // Eur. Respir. J. – 2017. – Vol. 49, № 3. – P. 1601969. doi: 10.1183/13993003.01969-2016.

33. Vesenbeckh S., Schönfeld N., Roth A. et al. Bedaquiline as a potential agent in the treatment of Mycobacterium abscessus infections // Eur. Respir. J. – 2017. – Vol. 49, № 5. – P. 1700083. doi: 10.1183/13993003.00083-2017.

34. Viljoen A., Raynaud C., Johansen M.D. et al. Verapamil improves the activity of bedaquiline against Mycobacterium abscessus in vitro and in macrophages // Antimicrob. Agents Chemother. – 2019. – Vol. 63, № 9. – e00705-19. doi: 10.1128/AAC.00705-19.

35. Wang M., Men P., Zhang W. et al. Bedaquiline susceptibility testing of Mycobacterium abscessus complex and Mycobacterium avium complex: a meta-analysis study // J. Glob. Antimicrob. Resist. – 2024. – Vol. 37. – P. 135-140. doi: 10.1016/j.jgar. 2024.03.009.

36. Wetzstein N., Geil A., Kann G. et al. Disseminated disease due to non-tuberculous mycobacteria in HIV positive patients: a retrospective case control study // PLoS One. – 2021. – Vol. 16, № 7. – e0254607. doi: 10.1371/journal.pone.0254607.

37. WHO consolidated guidelines on tuberculosis: Module 4: treatment – drug-resistant tuberculosis treatment, 2022 update [Internet]. – Geneva: World Health Organization, 2022.

38. Ying R., Yang J., Wu X. et al. Antimicrobial susceptibility testing using the MYCO Test System and MIC distribution of 8 drugs against clinical isolates of nontuberculous mycobacteria from Shanghai // Microbiol. Spectr. – 2023. – Vol. 11, № 2. – e0254922. doi: 10.1128/spectrum.02549-22.

39. Yu X., Gao X., Li C. et al. In vitro activities of bedaquiline and delamanid against nontuberculous mycobacteria isolated in Beijing, China // Antimicrob. Agents Chemother. – 2019. – Vol. 63, № 8. – e00031-19. doi: 10.1128/AAC.00031-19.

40. Zheng L., Qi X., Zhang W. et al. Efficacy of PBTZ169 and pretomanid against Mycobacterium avium, Mycobacterium abscessus, Mycobacterium chelonae and Mycobacterium fortuitum in BALB/c mice models // Front. Cell. Infect. Microbiol. – 2023. – Vol. 13. – 1115530. doi: 10.3389/fcimb.2023.1115530.

41. Zhu R., Shang Y., Chen S. et al. In vitro activity of the sudapyridine (WX-081) against non-tuberculous mycobacteria isolated in Beijing, China // Microbiol. Spectr. – 2022. – Vol. 10, № 6. – e0137222. doi: 10.1128/spectrum.01372-22.


Review

For citations:


Litvinov I.V., Safonova S.G., Peretokina I.V., Litvinov M.V. Activity of bedaquiline against mycobacteria (review). Tuberculosis and socially significant diseases. 2024;12(3):59-69. (In Russ.) https://doi.org/10.54921/2413-0346-2024-12-3-59-69

Views: 194


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-0346 (Print)
ISSN 2413-0354 (Online)