Preview

Туберкулез и социально значимые заболевания

Расширенный поиск

Генетический контроль латентной туберкулёзной инфекции

Об авторах

Т. К. Кондратьева
ФГБУ «Центральный НИИ туберкулеза» РАМН, г. Москва
Россия

Кондратьева Татьяна Константиновна – ведущий научный сотрудник лаборатории иммуногенетики отдела иммунологии ФГБУ «Центральный НИИ туберкулеза» РАМН, г. Москва, доктор биологических наук

Москва 107564, Яузская аллея, д. 2.



Т. Л. Ажикина
ФГБУН «Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова» РАН, г. Москва
Россия

Ажикина Татьяна Леодоровна – ведущий научный сотрудник ФГБУН «Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова» РАН, г. Москва, доктор биологических наук

117997, Москва, ГСП-7, ул. Миклухо-Маклая, 16/10



М. О. Шлеева
ФГБУН «Институт биохимии им. А.Н. Баха» РАН, г. Москва
Россия

Шлеева Маргарита Олеговна – старший научный сотрудник лаборатории биохимии стрессов микроорганизмов ФГБУН «Институт биохимии им. А.Н. Баха» РАН, г. Москва, кандидат биологических наук

г. Москва, Лениниский пр., д. 33
Тел.: +7 (495) 954-40-47



А. С. Капрелянц
ФГБУН «Институт биохимии им. А.Н. Баха» РАН, г. Москва
Россия

Капрелянц Арсений Сумбатович – заведующий лабораторией биохимии стрессов микроорганизмов ФГБУН «Институт биохимии им. А.Н. Баха» РАН, г. Москва, доктор биологических наук, профессор

г. Москва, Лениниский пр., д. 33
Тел.: +7 (495) 954-40-47



А. С. Апт
ФГБУ «Центральный НИИ туберкулеза» РАМН, г. Москва
Россия

Апт Александр Соломонович – заведующий лабораторией иммуногенетики отдела иммунологии ФГБУ «Центральный НИИ туберкулеза» РАМН, г. Москва, доктор биологических наук, профессор

Москва 107564, Яузская аллея, д. 2.



Список литературы

1. Апт А.С., Кондратьева Т.К. Туберкулёз: патогенез, иммунный ответ и генетика хозяина // Мол. биол. – 2008. – Т. 42. – С. 880-890.

2. Игнатов Д.В., Мефодьева Л.Г., Майоров К.Б. и др. Новые малые РНК Mycobacterium avium // Биоорган. химия. − 2012 − Т. 38. − С. 509-512.

3. Шлеева М.О., Салина Е.Г., апрельянц А.С. Покоящиеся формы микобактерий // Микробиология. − 2010. − Т. 79. − С. 3-15.

4. Ahmad S. Pathogenesis, immunology, and diagnosis of latent Mycobacterium tuberculosis infection // Clin. Dev. Immunol. − 2011. − Vol. 2011. – A. 814943.

5. Apt A.S. Are mouse models of human mycobacterial diseases relevant? Genetics says: ‘yes!’ // Immunology. – 2011. – Vol. 134. – P. 109-115.

6. Arcus V.L., Rainey P.B., Turner S.J. The PIN-domain toxin-antitoxin array in mycobacteria // Trends Microbiol. − 2005. − Vol. 13. − P. 360-365.

7. Arnvig K., Young D. Non-coding RNA and its potential role in Mycobacterium tuberculosis pathogenesis //RNA Biol. − 2012. − Vol. 9. − P. 427-436.

8. Arnvig K.B., Young D.B. Identification of small RNAs in Mycobacterium tuberculosis // Mol. Microbiol. − 2009. − Vol. 73. − P. 397-408.

9. Arnvig K.B., Comas I., Thomson N.R. et al. Sequence-based analysis uncovers an abundance of non-coding RNA in the total transcriptome of Mycobacterium tuberculosis // PLoS Pathog. − 2011. − Vol. 7. − e1002342.

10. Azhikina T., Skvortsov T., Radaeva T. et al. A new technique for obtaining whole pathogen transcriptomes from infected host tissues // Biotechniques. − 2010. − Vol. 48. − P. 139-144.

11. Barry C.E., 3rd, Boshoff H.I., Dartois V. et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies // Nat. Rev. Microbiol. − 2009. − Vol. 7. − P. 845-855.

12. Biketov S., Potapov V., Ganina E., et al. The role of resuscitation promoting factors in pathogenesis and reactivation of Mycobacterium tuberculosis during intra-peritoneal infection in mice // BMC Infect. Dis – 2007. – Vol. 7. – P. 146.

13. Boon C., Dick T. How Mycobacterium tuberculosis goes to sleep: the dormancy survival regulator DosR a decade later // Future Microbiol. − 2012. − Vol. 7. − P. 513-518.

14. Cardona P.J. A dynamic reinfection hypothesis of latent tuberculosis infection // Infection. − 2009. − Vol. 37. − P. 80-86.

15. Chao M.C., Rubin E.J. Letting sleeping dos lie: does dormancy play a role in tuberculosis? // Annu. Rev. Microbiol. − 2010. − Vol. 64. − P. 293-311.

16. Cobat A., Gallant C.J., Simkin L. et al. Two loci control tuberculin skin test reactivity in an area hyperendemic for tuberculosis // J. Exp. Med. − 2009. − Vol. 206. − P. 2583-2591.

17. Cohen-Gonsaud M., Barthe P., Bagneris C. et al. The structure of a resuscitation-promoting factor domain from Mycobacterium tuberculosis shows homology to lysozymes // Nat. Struct. Mol. Biol. − 2005. − Vol. 12. − P. 270-273.

18. de Wit D., Wootton M., Dhillon J. et al. The bacterial DNA content of mouse organs in the Cornell model of dormant tuberculosis // Tuberc. Lung Dis. − 1995. − Vol. 76. − P. 555-562.

19. Dhillon J., Mitchison D.A. Effect of vaccines in a murine model of dormant tuberculosis // Tuberc. Lung Dis. − 1994. − Vol. 75. − P. 61-64.

20. DiChiara J.M., Contreras-Martinez L.M., Livny J. et al. Multiple small RNAs identified in Mycobacterium bovis BCG are also expressed in Mycobacterium tuberculosis and Mycobacterium smegmatis // Nucleic. Acids Res. − 2010. − Vol. 38. − P. 4067-4078.

21. Downing K.J., Mischenko V.V., Shleeva M.O. et al. Mutants of Mycobacterium tuberculosis lacking three of the five rpf-like genes are defective for growth in vivo and for resuscitation in vitro // Infect. Immun. − 2005. − Vol. 73. − P. 3038-3043.

22. Ehlers S. Lazy, dynamic or minimally recrudescent? On the elusive nature and location of the mycobacterium responsible for latent tuberculosis // Infection. − 2009. − Vol. 37. − P. 87-95.

23. Fallow A., Domenech P., Reed M.B. Strains of the East Asian (W/Beijing) lineage of Mycobacterium tuberculosis are DosS/DosT-DosR two-component regulatory system natural mutants // J. Bacteriol. − 2010. − Vol. 192. − P. 2228-2238.

24. Fang H., Yu D., Hong Y. et al. The LuxR family regulator Rv0195 modulates Mycobacterium tuberculosis dormancy and virulence // Tuberculosis (Edinb). − 2013. − Vol. 93. − P. 425-431.

25. Flynn J.L., Chan J. Tuberculosis: latency and reactivation // Infect. Immun. − 2001. − Vol. 69. − P. 4195-4201.

26. Gangadharam P.R. Mycobacterial dormancy // Tuberc. Lung Dis. − 1995. − Vol. 76. − P. 477-479.

27. Gengenbacher M., Kaufmann S.H. Mycobacterium tuberculosis: success through dormancy // FEMS Microbiol. Rev. − 2012. − Vol. 36. − P. 514-532.

28. Gill W.P., Harik N.S., Whiddon M.R. et al. A replication clock for Mycobacterium tuberculosis // Nat. Med. − 2009. − Vol. 15. − P. 211-214.

29. Ignatov D., Malakho S., Majorov K. et al. RNA-Seq analysis of Mycobacterium avium non-coding transcriptome // PLoS One. − 2013. − Vol. 8. − e74209.

30. Kana B.D., Mizrahi V. Resuscitation promoting factors in bacterial population dynamics during TB infection // Drug Discovery Today: Disease Mechanisms. − 2010. − Vol. 7. − e13-e18.

31. Karakousis P.C., Yoshimatsu T., Lamichhane G. et al. Dormancy phenotype displayed by extracellular Mycobacterium tuberculosis within artificial granulomas in mice // J. Exp. Med. − 2004. − Vol. 200. − P. 647-657.

32. Kaufmann S.H. Future vaccination strategies against tuberculosis: thinking outside the box // Immunity. − 2010. − Vol. 33. − P. 567-577.

33. Keren I., Minami S., Rubin E. et al. Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters // MBio. − 2011. − Vol. 2. − e00100- 00111.

34. Kesavan A.K., Brooks M., Tufariello J. et al. Tuberculosis genes expressed during persistence and reactivation in the resistant rabbit model // Tuberculosis (Edinb). − 2009. − Vol. 89. − P. 17-21.

35. Kondratieva E., Logunova N., Majorov K. et al. Host genetics in granuloma formation: human-like lung pathology in mice with reciprocal genetic susceptibility to M. tuberculosis and M. avium // PLoS One. − 2010. − Vol. 5. − e10515.

36. Koo M.S., Subbian S., Kaplan G. Strain specific transcriptional response in Mycobacterium tuberculosis infected macrophages // Cell Commun. Signal. − 2012. − Vol. 10. − P. 2.

37. Lease R.A., Smith D., McDonough K. et al. The small noncoding DsrA RNA is an acid resistance regulator in Escherichia coli // J. Bacteriol. − 2004. − Vol. 186. − P. 6179-6185.

38. Lecoeur H.F., Lagrange P.H., Truffot-Pernot C. et al. Relapses after stopping chemotherapy for experimental tuberculosis in genetically resistant and susceptible strains of mice // Clin. Exp. Immunol. − 1989. − Vol. 76. − P. 458-462.

39. Leistikow R.L., Morton R.A., Bartek I.L. et al. The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy // J. Bacteriol. − 2010. − Vol. 192. − P. 1662-1670.

40. Lillebaek T., Andersen A.B., Dirksen A. et al. Persistent high incidence of tuberculosis in immigrants in a low-incidence country // Emerg. Infect. Dis. − 2002. − Vol. 8. − P. 679-684.

41. Low K.L., Rao P.S., Shui G. et al. Triacylglycerol utilization is required for regrowth of in vitro hypoxic nonreplicating Mycobacterium bovis BCG // J. Bacteriol. − 2009. − Vol. 191. − P. 5037-5043.

42. Malhotra V., Tyagi J.S., Clark-Curtiss J.E. DevR-mediated adaptive response in Mycobacterium tuberculosis H37Ra: links to asparagine metabolism // Tuberculosis (Edinb). − 2009. − Vol. 89. − P. 169-174.

43. Manzanillo P.S., Shiloh M.U., Portnoy D.A. et al. Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages // Cell Host Microbe. − 2012. − Vol. 11. − P. 469-480.

44. McCune R.M., Feldmann F.M., Lambert H.P. et al. Microbial persistence. I. The capacity of tubercle bacilli to survive sterilization in mouse tissues // J. Exp. Med. − 1966. − Vol. 123. − P. 445-468.

45. McCune R.M., Feldmann F.M., McDermott W. Microbial persistence. II. Characteristics of the sterile state of tubercle bacilli // J. Exp. Med. − 1966. − Vol. 123. − P. 469-486.

46. McGinn S., Gut I.G. DNA sequencing - spanning the generations // N. Biotechnol. − 2013. − Vol. 30. − P. 366-372.

47. McKinney J.D., Honer zu Bentrup K., Munoz-Elias E.J. et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase // Nature. − 2000. − Vol. 406. − P. 735-738.

48. Medina E., North R.J. Resistance ranking of some common inbred mouse strains to Mycobacterium tuberculosis and relationship to major histocompatibility complex haplotype and Nramp1 genotype // Immunology. − 1998. − Vol. 93. − P. 270-274.

49. Metzker M.L. Sequencing technologies - the next generation // Nat. Rev. Genet. − 2010. − Vol. 11. − P. 31-46.

50. Minch K., Rustad T., Sherman D.R. Mycobacterium tuberculosis growth following aerobic expression of the DosR regulon // PLoS One. − 2012. − Vol. 7. − e35935.

51. Miotto P., Forti F., Ambrosi A. et al. Genome-wide discovery of small RNAs in Mycobacterium tuberculosis // PLoS One. − 2012. − Vol. 7. − e51950.

52. Mukamolova G., Salina E., Kaprelyants A. Mechanisms of latent tuberculosis: dormancy and resuscitation of Mycobacterium tuberculosis // National Institute of Allergy and Infectious Diseases, Nih, Vol 1: Frontiers in Research. − 2008. − Vol. 1. − P. 83-90.

53. Munoz-Elias E.J., Timm J., Botha T. et al. Replication dynamics of Mycobacterium tuberculosis in chronically infected mice // Infect. Immun. − 2005. − Vol. 73. − P. 546-551.

54. Murphy D.J., Brown J.R. Identification of gene targets against dormant phase Mycobacterium tuberculosis infections // BMC Infect. Dis. − 2007. − Vol. 7. − 84.

55. North R.J., Jung Y.J. Immunity to tuberculosis // Annu. Rev. Immunol. − 2004. − Vol. 22. − P. 599-623.

56. Ottenhoff T.H., Kaufmann S.H. Vaccines against tuberculosis: where are we and where do we need to go? // PLoS Pathog. − 2012. − Vol. 8. − e1002607.

57. Ozsolak F. Third-generation sequencing techniques and applications to drug discovery // Expert. Opin. Drug Discov. − 2012. − Vol. 7. − P. 231-243.

58. Park H.D., Guinn K.M., Harrell M.I. et al. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis // Mol. Microbiol. − 2003. − Vol. 48. − P. 833-843.

59. Pellin D., Miotto P., Ambrosi A. et al. A genome-wide identification analysis of small regulatory RNAs in Mycobacterium tuberculosis by RNA-Seq and conservation analysis // PLoS One. − 2012. − Vol. 7. − e32723.

60. Radaeva T.V., Nikonenko B.V., Mischenko V.V. et al. Direct comparison of low-dose and Cornell-like models of chronic and reactivation tuberculosis in genetically susceptible I/St and resistant B6 mice // Tuberculosis (Edinb). − 2005. − Vol. 85. − P. 65-72.

61. Radaeva T.V., Kondratieva E.V., Sosunov V.V. et al. A human-like TB in genetically susceptible mice followed by the true dormancy in a Cornell-like model // Tuberculosis (Edinb). – 2008. − Vol. 88. − P. 576-585.

62. Rhoades E.R., Frank A.A., Orme I.M. Progression of chronic pulmonary tuberculosis in mice aerogenically infected with virulent Mycobacterium tuberculosis // Tuberc. Lung Dis. − 1997. − Vol. 78. − P. 57-66.

63. Rodriguez J.E., Ramirez A.S., Salas L.P. et al. Transcription of genes involved in sulfolipid and polyacyltrehalose biosynthesis of Mycobacterium tuberculosis in experimental latent tuberculosis infection // PLoS One. − 2013. − Vol. 8. − e58378.

64. Russell D.G. Who puts the tubercle in tuberculosis? // Nat. Rev. Microbiol, − 2007. − Vol. 5. − P. 39-47.

65. Russell D.G. Mycobacterium tuberculosis and the intimate discourse of a chronic infection // Immunol. Rev. − 2011. − Vol. 240. − P. 252-268.

66. Rustad T.R., Harrell M.I., Liao R. et al. The enduring hypoxic response of Mycobacterium tuberculosis // PLoS One. − 2008. − Vol. 3. − e1502.

67. Salina E.G., Mollenkopf H.J., Kaufmann S.H. et al. M. tuberculosis gene expression during transition to the «non-culturable» // State. Acta Naturae. − 2009. − Vol. 1. − P. 73-77.

68. Scanga C.A., Mohan V.P., Joseph H. et al. Reactivation of latent tuberculosis: variations on the Cornell murine model // Infect. Immun. – 1999. – Vol. 67. – P. 4531-4538

69. Schnappinger D., Ehrt S., Voskuil M.I. et al. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment // J. Exp. Med. – 2003. – Vol. 198. – P. 693-704.

70. Schurr E., Kramnik I. Genetic control of host susceptibility to tuberculosis. Handbook of Tuberculosis. Ed. by S. Kaufmann and W. Britten. − Wiley-VCH, Weinheim, Germany, 2008.

71. Sharma D., Bose A., Shakila H. et al. Expression of mycobacterial cell division protein, FtsZ, and dormancy proteins, DevR and Acr, within lung granulomas throughout guinea pig infection // FEMS Immunol. Med. Microbiol. – 2006. – Vol. 48, – P. 329-336.

72. Shendure J. The beginning of the end for microarrays? // Nat. Methods. − 2008. − Vol. 5. − P. 585-587.

73. Sherman D.R., Voskuil M., Schnappinger D. et al. Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha-crystallin // Proc. Natl. Acad. Sci. USA. − 2001. − Vol. 98. − P. 7534-7539.

74. Skvortsov T.A., Ignatov D.V., Majorov K.B. et al. Mycobacterium tuberculosis transcriptome profiling in mice with genetically different susceptibility to tuberculosis // Acta Naturae. − 2013. − Vol. 5. − P. 62-69.

75. Toledo-Arana A., Repoila F., Cossart P. Small noncoding RNAs controlling pathogenesis // Curr. Opin. Microbiol. − 2007. − Vol. 10. − P. 182-188.

76. Ulrichs T.,Kaufmann S.H. New insights into the function of granulomas in human tuberculosis // J. Pathol. − 2006. − Vol. 208. − P. 261-269.

77. Uplekar S., Rougemont J., Cole S.T. et al. High-resolution transcriptome and genome-wide dynamics of RNA polymerase and NusA in Mycobacterium tuberculosis // Nucleic Acids Res. − 2013. − Vol. 41. − P. 961-977.

78. Voskuil M.I., Schnappinger D., Visconti K.C. et al. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program // J. Exp. Med. − 2003. − Vol. 198. − P. 705-713.

79. Wang S., Dong X., Zhu Y. et al. Revealing of Mycobacterium marinum transcriptome by RNA-seq // PLoS One. − 2013. − Vol. 8. − e75828.

80. Waters L.S., Storz G. Regulatory RNAs in bacteria // Cell. − 2009. − Vol. 136. − P. 615-628.

81. Wayne L.G. Dormancy of Mycobacterium tuberculosis and latency of disease // Eur. J. Clin. Microbiol. Infect. Dis. − 1994. − Vol. 13. − P. 908-914.

82. Wayne L.G., Lin K.Y. Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions // Infect. Immun. − 1982. − Vol. 37. − P. 1042-1049.

83. Yang Z., Rosenthal M., Rosenberg N.A. et al. How dormant is Mycobacterium tuberculosis during latency? A study integrating genomics and molecular epidemiology // Infect. Genet. Evol. − 2011. − Vol. 11. − P. 1164-1167.

84. Yuan Y., Crane D.D., Simpson R.M. et al. The 16-kDa alpha-crystallin (Acr) protein of Mycobacterium tuberculosis is required for growth in macrophages // Proc. Natl. Acad. Sci. USA. − 1998. −Vol. 95. − P. 9578-9583.

85. Zhang Y. Persistent and dormant tubercle bacilli and latent tuberculosis // Front. Biosci. − 2004. − Vol. 9. − P. 1136-1156.


Рецензия

Для цитирования:


Кондратьева Т.К., Ажикина Т.Л., Шлеева М.О., Капрелянц А.С., Апт А.С. Генетический контроль латентной туберкулёзной инфекции. Туберкулез и социально значимые заболевания. 2013;(2):61-67.

Просмотров: 28


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2413-0346 (Print)
ISSN 2413-0354 (Online)