Генетический контроль латентной туберкулёзной инфекции
Об авторах
Т. К. КондратьеваРоссия
Кондратьева Татьяна Константиновна – ведущий научный сотрудник лаборатории иммуногенетики отдела иммунологии ФГБУ «Центральный НИИ туберкулеза» РАМН, г. Москва, доктор биологических наук
Москва 107564, Яузская аллея, д. 2.
Т. Л. Ажикина
Россия
Ажикина Татьяна Леодоровна – ведущий научный сотрудник ФГБУН «Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова» РАН, г. Москва, доктор биологических наук
117997, Москва, ГСП-7, ул. Миклухо-Маклая, 16/10
М. О. Шлеева
Россия
Шлеева Маргарита Олеговна – старший научный сотрудник лаборатории биохимии стрессов микроорганизмов ФГБУН «Институт биохимии им. А.Н. Баха» РАН, г. Москва, кандидат биологических наук
г. Москва, Лениниский пр., д. 33
Тел.: +7 (495) 954-40-47
А. С. Капрелянц
Россия
Капрелянц Арсений Сумбатович – заведующий лабораторией биохимии стрессов микроорганизмов ФГБУН «Институт биохимии им. А.Н. Баха» РАН, г. Москва, доктор биологических наук, профессор
г. Москва, Лениниский пр., д. 33
Тел.: +7 (495) 954-40-47
А. С. Апт
Россия
Апт Александр Соломонович – заведующий лабораторией иммуногенетики отдела иммунологии ФГБУ «Центральный НИИ туберкулеза» РАМН, г. Москва, доктор биологических наук, профессор
Москва 107564, Яузская аллея, д. 2.
Список литературы
1. Апт А.С., Кондратьева Т.К. Туберкулёз: патогенез, иммунный ответ и генетика хозяина // Мол. биол. – 2008. – Т. 42. – С. 880-890.
2. Игнатов Д.В., Мефодьева Л.Г., Майоров К.Б. и др. Новые малые РНК Mycobacterium avium // Биоорган. химия. − 2012 − Т. 38. − С. 509-512.
3. Шлеева М.О., Салина Е.Г., апрельянц А.С. Покоящиеся формы микобактерий // Микробиология. − 2010. − Т. 79. − С. 3-15.
4. Ahmad S. Pathogenesis, immunology, and diagnosis of latent Mycobacterium tuberculosis infection // Clin. Dev. Immunol. − 2011. − Vol. 2011. – A. 814943.
5. Apt A.S. Are mouse models of human mycobacterial diseases relevant? Genetics says: ‘yes!’ // Immunology. – 2011. – Vol. 134. – P. 109-115.
6. Arcus V.L., Rainey P.B., Turner S.J. The PIN-domain toxin-antitoxin array in mycobacteria // Trends Microbiol. − 2005. − Vol. 13. − P. 360-365.
7. Arnvig K., Young D. Non-coding RNA and its potential role in Mycobacterium tuberculosis pathogenesis //RNA Biol. − 2012. − Vol. 9. − P. 427-436.
8. Arnvig K.B., Young D.B. Identification of small RNAs in Mycobacterium tuberculosis // Mol. Microbiol. − 2009. − Vol. 73. − P. 397-408.
9. Arnvig K.B., Comas I., Thomson N.R. et al. Sequence-based analysis uncovers an abundance of non-coding RNA in the total transcriptome of Mycobacterium tuberculosis // PLoS Pathog. − 2011. − Vol. 7. − e1002342.
10. Azhikina T., Skvortsov T., Radaeva T. et al. A new technique for obtaining whole pathogen transcriptomes from infected host tissues // Biotechniques. − 2010. − Vol. 48. − P. 139-144.
11. Barry C.E., 3rd, Boshoff H.I., Dartois V. et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies // Nat. Rev. Microbiol. − 2009. − Vol. 7. − P. 845-855.
12. Biketov S., Potapov V., Ganina E., et al. The role of resuscitation promoting factors in pathogenesis and reactivation of Mycobacterium tuberculosis during intra-peritoneal infection in mice // BMC Infect. Dis – 2007. – Vol. 7. – P. 146.
13. Boon C., Dick T. How Mycobacterium tuberculosis goes to sleep: the dormancy survival regulator DosR a decade later // Future Microbiol. − 2012. − Vol. 7. − P. 513-518.
14. Cardona P.J. A dynamic reinfection hypothesis of latent tuberculosis infection // Infection. − 2009. − Vol. 37. − P. 80-86.
15. Chao M.C., Rubin E.J. Letting sleeping dos lie: does dormancy play a role in tuberculosis? // Annu. Rev. Microbiol. − 2010. − Vol. 64. − P. 293-311.
16. Cobat A., Gallant C.J., Simkin L. et al. Two loci control tuberculin skin test reactivity in an area hyperendemic for tuberculosis // J. Exp. Med. − 2009. − Vol. 206. − P. 2583-2591.
17. Cohen-Gonsaud M., Barthe P., Bagneris C. et al. The structure of a resuscitation-promoting factor domain from Mycobacterium tuberculosis shows homology to lysozymes // Nat. Struct. Mol. Biol. − 2005. − Vol. 12. − P. 270-273.
18. de Wit D., Wootton M., Dhillon J. et al. The bacterial DNA content of mouse organs in the Cornell model of dormant tuberculosis // Tuberc. Lung Dis. − 1995. − Vol. 76. − P. 555-562.
19. Dhillon J., Mitchison D.A. Effect of vaccines in a murine model of dormant tuberculosis // Tuberc. Lung Dis. − 1994. − Vol. 75. − P. 61-64.
20. DiChiara J.M., Contreras-Martinez L.M., Livny J. et al. Multiple small RNAs identified in Mycobacterium bovis BCG are also expressed in Mycobacterium tuberculosis and Mycobacterium smegmatis // Nucleic. Acids Res. − 2010. − Vol. 38. − P. 4067-4078.
21. Downing K.J., Mischenko V.V., Shleeva M.O. et al. Mutants of Mycobacterium tuberculosis lacking three of the five rpf-like genes are defective for growth in vivo and for resuscitation in vitro // Infect. Immun. − 2005. − Vol. 73. − P. 3038-3043.
22. Ehlers S. Lazy, dynamic or minimally recrudescent? On the elusive nature and location of the mycobacterium responsible for latent tuberculosis // Infection. − 2009. − Vol. 37. − P. 87-95.
23. Fallow A., Domenech P., Reed M.B. Strains of the East Asian (W/Beijing) lineage of Mycobacterium tuberculosis are DosS/DosT-DosR two-component regulatory system natural mutants // J. Bacteriol. − 2010. − Vol. 192. − P. 2228-2238.
24. Fang H., Yu D., Hong Y. et al. The LuxR family regulator Rv0195 modulates Mycobacterium tuberculosis dormancy and virulence // Tuberculosis (Edinb). − 2013. − Vol. 93. − P. 425-431.
25. Flynn J.L., Chan J. Tuberculosis: latency and reactivation // Infect. Immun. − 2001. − Vol. 69. − P. 4195-4201.
26. Gangadharam P.R. Mycobacterial dormancy // Tuberc. Lung Dis. − 1995. − Vol. 76. − P. 477-479.
27. Gengenbacher M., Kaufmann S.H. Mycobacterium tuberculosis: success through dormancy // FEMS Microbiol. Rev. − 2012. − Vol. 36. − P. 514-532.
28. Gill W.P., Harik N.S., Whiddon M.R. et al. A replication clock for Mycobacterium tuberculosis // Nat. Med. − 2009. − Vol. 15. − P. 211-214.
29. Ignatov D., Malakho S., Majorov K. et al. RNA-Seq analysis of Mycobacterium avium non-coding transcriptome // PLoS One. − 2013. − Vol. 8. − e74209.
30. Kana B.D., Mizrahi V. Resuscitation promoting factors in bacterial population dynamics during TB infection // Drug Discovery Today: Disease Mechanisms. − 2010. − Vol. 7. − e13-e18.
31. Karakousis P.C., Yoshimatsu T., Lamichhane G. et al. Dormancy phenotype displayed by extracellular Mycobacterium tuberculosis within artificial granulomas in mice // J. Exp. Med. − 2004. − Vol. 200. − P. 647-657.
32. Kaufmann S.H. Future vaccination strategies against tuberculosis: thinking outside the box // Immunity. − 2010. − Vol. 33. − P. 567-577.
33. Keren I., Minami S., Rubin E. et al. Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters // MBio. − 2011. − Vol. 2. − e00100- 00111.
34. Kesavan A.K., Brooks M., Tufariello J. et al. Tuberculosis genes expressed during persistence and reactivation in the resistant rabbit model // Tuberculosis (Edinb). − 2009. − Vol. 89. − P. 17-21.
35. Kondratieva E., Logunova N., Majorov K. et al. Host genetics in granuloma formation: human-like lung pathology in mice with reciprocal genetic susceptibility to M. tuberculosis and M. avium // PLoS One. − 2010. − Vol. 5. − e10515.
36. Koo M.S., Subbian S., Kaplan G. Strain specific transcriptional response in Mycobacterium tuberculosis infected macrophages // Cell Commun. Signal. − 2012. − Vol. 10. − P. 2.
37. Lease R.A., Smith D., McDonough K. et al. The small noncoding DsrA RNA is an acid resistance regulator in Escherichia coli // J. Bacteriol. − 2004. − Vol. 186. − P. 6179-6185.
38. Lecoeur H.F., Lagrange P.H., Truffot-Pernot C. et al. Relapses after stopping chemotherapy for experimental tuberculosis in genetically resistant and susceptible strains of mice // Clin. Exp. Immunol. − 1989. − Vol. 76. − P. 458-462.
39. Leistikow R.L., Morton R.A., Bartek I.L. et al. The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy // J. Bacteriol. − 2010. − Vol. 192. − P. 1662-1670.
40. Lillebaek T., Andersen A.B., Dirksen A. et al. Persistent high incidence of tuberculosis in immigrants in a low-incidence country // Emerg. Infect. Dis. − 2002. − Vol. 8. − P. 679-684.
41. Low K.L., Rao P.S., Shui G. et al. Triacylglycerol utilization is required for regrowth of in vitro hypoxic nonreplicating Mycobacterium bovis BCG // J. Bacteriol. − 2009. − Vol. 191. − P. 5037-5043.
42. Malhotra V., Tyagi J.S., Clark-Curtiss J.E. DevR-mediated adaptive response in Mycobacterium tuberculosis H37Ra: links to asparagine metabolism // Tuberculosis (Edinb). − 2009. − Vol. 89. − P. 169-174.
43. Manzanillo P.S., Shiloh M.U., Portnoy D.A. et al. Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages // Cell Host Microbe. − 2012. − Vol. 11. − P. 469-480.
44. McCune R.M., Feldmann F.M., Lambert H.P. et al. Microbial persistence. I. The capacity of tubercle bacilli to survive sterilization in mouse tissues // J. Exp. Med. − 1966. − Vol. 123. − P. 445-468.
45. McCune R.M., Feldmann F.M., McDermott W. Microbial persistence. II. Characteristics of the sterile state of tubercle bacilli // J. Exp. Med. − 1966. − Vol. 123. − P. 469-486.
46. McGinn S., Gut I.G. DNA sequencing - spanning the generations // N. Biotechnol. − 2013. − Vol. 30. − P. 366-372.
47. McKinney J.D., Honer zu Bentrup K., Munoz-Elias E.J. et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase // Nature. − 2000. − Vol. 406. − P. 735-738.
48. Medina E., North R.J. Resistance ranking of some common inbred mouse strains to Mycobacterium tuberculosis and relationship to major histocompatibility complex haplotype and Nramp1 genotype // Immunology. − 1998. − Vol. 93. − P. 270-274.
49. Metzker M.L. Sequencing technologies - the next generation // Nat. Rev. Genet. − 2010. − Vol. 11. − P. 31-46.
50. Minch K., Rustad T., Sherman D.R. Mycobacterium tuberculosis growth following aerobic expression of the DosR regulon // PLoS One. − 2012. − Vol. 7. − e35935.
51. Miotto P., Forti F., Ambrosi A. et al. Genome-wide discovery of small RNAs in Mycobacterium tuberculosis // PLoS One. − 2012. − Vol. 7. − e51950.
52. Mukamolova G., Salina E., Kaprelyants A. Mechanisms of latent tuberculosis: dormancy and resuscitation of Mycobacterium tuberculosis // National Institute of Allergy and Infectious Diseases, Nih, Vol 1: Frontiers in Research. − 2008. − Vol. 1. − P. 83-90.
53. Munoz-Elias E.J., Timm J., Botha T. et al. Replication dynamics of Mycobacterium tuberculosis in chronically infected mice // Infect. Immun. − 2005. − Vol. 73. − P. 546-551.
54. Murphy D.J., Brown J.R. Identification of gene targets against dormant phase Mycobacterium tuberculosis infections // BMC Infect. Dis. − 2007. − Vol. 7. − 84.
55. North R.J., Jung Y.J. Immunity to tuberculosis // Annu. Rev. Immunol. − 2004. − Vol. 22. − P. 599-623.
56. Ottenhoff T.H., Kaufmann S.H. Vaccines against tuberculosis: where are we and where do we need to go? // PLoS Pathog. − 2012. − Vol. 8. − e1002607.
57. Ozsolak F. Third-generation sequencing techniques and applications to drug discovery // Expert. Opin. Drug Discov. − 2012. − Vol. 7. − P. 231-243.
58. Park H.D., Guinn K.M., Harrell M.I. et al. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis // Mol. Microbiol. − 2003. − Vol. 48. − P. 833-843.
59. Pellin D., Miotto P., Ambrosi A. et al. A genome-wide identification analysis of small regulatory RNAs in Mycobacterium tuberculosis by RNA-Seq and conservation analysis // PLoS One. − 2012. − Vol. 7. − e32723.
60. Radaeva T.V., Nikonenko B.V., Mischenko V.V. et al. Direct comparison of low-dose and Cornell-like models of chronic and reactivation tuberculosis in genetically susceptible I/St and resistant B6 mice // Tuberculosis (Edinb). − 2005. − Vol. 85. − P. 65-72.
61. Radaeva T.V., Kondratieva E.V., Sosunov V.V. et al. A human-like TB in genetically susceptible mice followed by the true dormancy in a Cornell-like model // Tuberculosis (Edinb). – 2008. − Vol. 88. − P. 576-585.
62. Rhoades E.R., Frank A.A., Orme I.M. Progression of chronic pulmonary tuberculosis in mice aerogenically infected with virulent Mycobacterium tuberculosis // Tuberc. Lung Dis. − 1997. − Vol. 78. − P. 57-66.
63. Rodriguez J.E., Ramirez A.S., Salas L.P. et al. Transcription of genes involved in sulfolipid and polyacyltrehalose biosynthesis of Mycobacterium tuberculosis in experimental latent tuberculosis infection // PLoS One. − 2013. − Vol. 8. − e58378.
64. Russell D.G. Who puts the tubercle in tuberculosis? // Nat. Rev. Microbiol, − 2007. − Vol. 5. − P. 39-47.
65. Russell D.G. Mycobacterium tuberculosis and the intimate discourse of a chronic infection // Immunol. Rev. − 2011. − Vol. 240. − P. 252-268.
66. Rustad T.R., Harrell M.I., Liao R. et al. The enduring hypoxic response of Mycobacterium tuberculosis // PLoS One. − 2008. − Vol. 3. − e1502.
67. Salina E.G., Mollenkopf H.J., Kaufmann S.H. et al. M. tuberculosis gene expression during transition to the «non-culturable» // State. Acta Naturae. − 2009. − Vol. 1. − P. 73-77.
68. Scanga C.A., Mohan V.P., Joseph H. et al. Reactivation of latent tuberculosis: variations on the Cornell murine model // Infect. Immun. – 1999. – Vol. 67. – P. 4531-4538
69. Schnappinger D., Ehrt S., Voskuil M.I. et al. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment // J. Exp. Med. – 2003. – Vol. 198. – P. 693-704.
70. Schurr E., Kramnik I. Genetic control of host susceptibility to tuberculosis. Handbook of Tuberculosis. Ed. by S. Kaufmann and W. Britten. − Wiley-VCH, Weinheim, Germany, 2008.
71. Sharma D., Bose A., Shakila H. et al. Expression of mycobacterial cell division protein, FtsZ, and dormancy proteins, DevR and Acr, within lung granulomas throughout guinea pig infection // FEMS Immunol. Med. Microbiol. – 2006. – Vol. 48, – P. 329-336.
72. Shendure J. The beginning of the end for microarrays? // Nat. Methods. − 2008. − Vol. 5. − P. 585-587.
73. Sherman D.R., Voskuil M., Schnappinger D. et al. Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha-crystallin // Proc. Natl. Acad. Sci. USA. − 2001. − Vol. 98. − P. 7534-7539.
74. Skvortsov T.A., Ignatov D.V., Majorov K.B. et al. Mycobacterium tuberculosis transcriptome profiling in mice with genetically different susceptibility to tuberculosis // Acta Naturae. − 2013. − Vol. 5. − P. 62-69.
75. Toledo-Arana A., Repoila F., Cossart P. Small noncoding RNAs controlling pathogenesis // Curr. Opin. Microbiol. − 2007. − Vol. 10. − P. 182-188.
76. Ulrichs T.,Kaufmann S.H. New insights into the function of granulomas in human tuberculosis // J. Pathol. − 2006. − Vol. 208. − P. 261-269.
77. Uplekar S., Rougemont J., Cole S.T. et al. High-resolution transcriptome and genome-wide dynamics of RNA polymerase and NusA in Mycobacterium tuberculosis // Nucleic Acids Res. − 2013. − Vol. 41. − P. 961-977.
78. Voskuil M.I., Schnappinger D., Visconti K.C. et al. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program // J. Exp. Med. − 2003. − Vol. 198. − P. 705-713.
79. Wang S., Dong X., Zhu Y. et al. Revealing of Mycobacterium marinum transcriptome by RNA-seq // PLoS One. − 2013. − Vol. 8. − e75828.
80. Waters L.S., Storz G. Regulatory RNAs in bacteria // Cell. − 2009. − Vol. 136. − P. 615-628.
81. Wayne L.G. Dormancy of Mycobacterium tuberculosis and latency of disease // Eur. J. Clin. Microbiol. Infect. Dis. − 1994. − Vol. 13. − P. 908-914.
82. Wayne L.G., Lin K.Y. Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions // Infect. Immun. − 1982. − Vol. 37. − P. 1042-1049.
83. Yang Z., Rosenthal M., Rosenberg N.A. et al. How dormant is Mycobacterium tuberculosis during latency? A study integrating genomics and molecular epidemiology // Infect. Genet. Evol. − 2011. − Vol. 11. − P. 1164-1167.
84. Yuan Y., Crane D.D., Simpson R.M. et al. The 16-kDa alpha-crystallin (Acr) protein of Mycobacterium tuberculosis is required for growth in macrophages // Proc. Natl. Acad. Sci. USA. − 1998. −Vol. 95. − P. 9578-9583.
85. Zhang Y. Persistent and dormant tubercle bacilli and latent tuberculosis // Front. Biosci. − 2004. − Vol. 9. − P. 1136-1156.
Рецензия
Для цитирования:
Кондратьева Т.К., Ажикина Т.Л., Шлеева М.О., Капрелянц А.С., Апт А.С. Генетический контроль латентной туберкулёзной инфекции. Туберкулез и социально значимые заболевания. 2013;(2):61-67.